

Brett Williams, PhD – Principal Advisor, EV Programs, CSE Nicholas Pallonetti – Research Analyst, CSE

with thanks to M. Eluganti and others at the Center for Sustainable Energy (CSE) and to client state agencies including CARB & MA DOER

State EV Rebate Programs Administered by CSE (as of 7/6/2021)

	CALIFORNIA CLEAN VEHICLE REBATE PROJECT	Massachusetts Offers Rebates for Electric Vehicles	Connecticut Hydrogen and Electric Automobile Purchase Rebate		OREGON CLEAN VEHICLE REBATE PROGRAM	nt chargeup
Fuel-Cell EVs	\$4,500 (+2,500*)	\$2,500	\$7,500 (+\$2,000*)	≥ 200 e-miles [†] : \$2,000	≥ 10 kWh:	
All-Battery EVs	\$2,000 (+2,500*)	\$2,500	\$2,250 (+\$2,000*)	≥ 40 e-miles: \$1,000 < 40 e-miles:	\$2,500 (+\$2,500*)	\$25/e-mile [†] : \$2,000 max for
Plug-in Hybrid EVs	BEVx = \$2,000 Others = \$1,000 (+\$2,500*)	BEVx = \$2,500 Others = \$1,500	\$750 (+\$1,500*)	\$500 Base MSRP > \$42k: \$500	\$1,500 (+\$2,500*) \$5,000 I	MSRP < \$55k; \$5,000 max for MSRP < \$45k
Zero-Emission Motorcycles	\$750				\$750 (and NEVs)	
	* Rebate adder: income-qualified		* Rebate adder: qualified by proxy		* Rebate adder: income-qualified	
			Point-of-sale option	Point-of-sale	Point-of-sale option	Point-of-sale
Program Design	Base MSRP: - PEVs ≤ \$60k	Purchase price ≤ \$50k	Base MSRP: - FCEVs ≤ \$60k - PEVs ≤ \$42k	Base MSRP > \$42k = \$500	Base MSRP < \$50k	Trim-specific MSRP < \$55k
Elements	\geq 30 e-miles [†]	\geq 25 e-miles [†]				
	Income cap		 Used EV program (\$7.5k/\$3k/\$1.125k) \$125/\$75 dealer sales incentive 		Used EVs also qualify	

BEVx = range-extended battery electric vehicle (BMW i3 REx). NEV = Neighborhood EV. Electric miles (e-miles) are U.S.-EPA-rated all-electric miles.

Outline: Cost-Effectiveness of GHG Emission Reductions

- Introduction
- II. Data Summary
- III. Methodology
- IV. Results & Discussion
 - Rebated Reductions, Rebate Influence, Changes Over Time
- V. Conclusion

Select Summary, Recommendations, Limitations & Next Steps

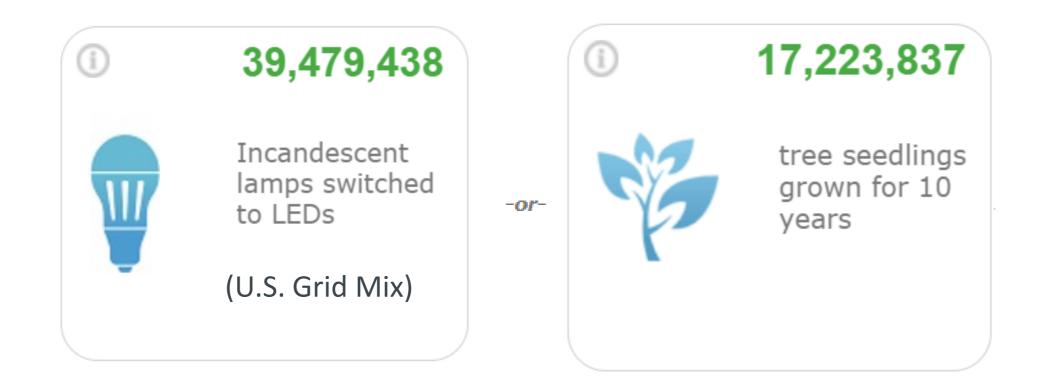
References

Additional Detail

– Data, Input Values, Sensitivities & Comparisons to Prior Work Additional Context & Resources

Latest version of paper:

https://cleanvehiclerebate.org/eng/content/evaluating-cost-effectiveness-greenhouse-gas-emission-reductions-associated-statewide



Prologue: Estimated Greenhouse-Gas Emissions Reductions from *Rebate-Essential* Calendar-Year 2019 Purchases/Leases

Technology type	Total vehicles	Average first-year GHG reductions per vehicle (tons*)	Average warranty- life GHG reductions per vehicle (tons*)	Total <i>Rebate-Essential</i> warranty-life reductions	Rebate dollars <i>Rebate-Essen</i> warranty-lif ton reduced
All	N = 63,096 55% Rebate Essential	3.5 tons	30 tons	1 million tons ⁺	\$149/ton

⁺ 1 million tons avoided is the same as...

* ton GHGs = metric ton carbon-dioxide-equivalent (CO_2e) emissions. ⁺ U.S. EPA GHG equivalency from: <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>

Disclaimer

inform CVRP.

- It does not necessarily represent the views of CARB staff. purposes.

We thank CARB staff for the opportunity to contribute to the conversation.

> CVRP = Clean Vehicle Rebate Project CARB = California Air Resources Board

This study was conducted by the Center for Sustainable Energy to

– Nor does it represent a final determination for project-reporting

Context & Contributions

This presentation is **based upon**:

- a precursor research article in the journal *Energies*

It builds upon:

- - conservative and to be updated as data become available

Contributions

- Informs methodological enhancements to CVRP program evaluation
- Demonstrates the impact of using program-derived and case-specific data
- *Energies* article examined life of program through mid-2018
- IEPEC paper: most recent complete year of data available
 - Calendar-year (CY) 2019 purchases/leases
- This presentation also includes preliminary CY 2020 estimates

Links direct to CVRP or CARB websites; details provided on reference slides

- a juried paper for the International Energy Program Evaluation Conference

– CARB's Funding Plans for its broad portfolio of Clean Transportation Incentives • Forward-looking, multi-program, use vehicle averages, characterized as intentionally

Program Designs Affect Program Outcomes

	as of 1/1/2019	as of 12/3/2019
Fuel-Cell EVs	\$5,000	\$4,500
All-Battery EVs	\$2,500	\$2,000
Plug-in Hybrid EVs	BEVx*: \$2,500 Others: \$1,500	BEVx*: \$2,000 Others: \$1,000
Zero-Emission Motorcycles	\$900	\$750
Program Design Elements	 +\$2,000 for qualified lower-income households‡ Income cap ≥ 20 electric miles⁺ 18-month application window 	 +\$2,500 for qualified lower-income households‡ Income cap ≥ 35 electric miles[†] 1 rebate limit § Base MSRP ≤ \$60k (PEVs)
	(Waitlist 6/5 – 9/23 for standard rebates)	

* BEVx = range-extended battery electric vehicle (BMW i3 REx). + Based on the Urban Dynamometer Driving Schedule (UDDS). ‡ < 300% Federal Poverty Level (FPL). § A second rebate can be approved for a FCEV if the first rebate was for a PEV.

Funding Availability Has Been Regularly Disrupted (as of Oct 2019)

Table 3: CVRP Waitlists

Waitlist Year	Start Date	End Date	Length in Days
2011*	6/20	9/30	102
2013*	5/1	6/30	60
2014	3/28	7/22	116
2016	6/11	9/28	109
2017**	6/30	11/20	143
2019**	6/5	9/23	110

* Dates approximate.

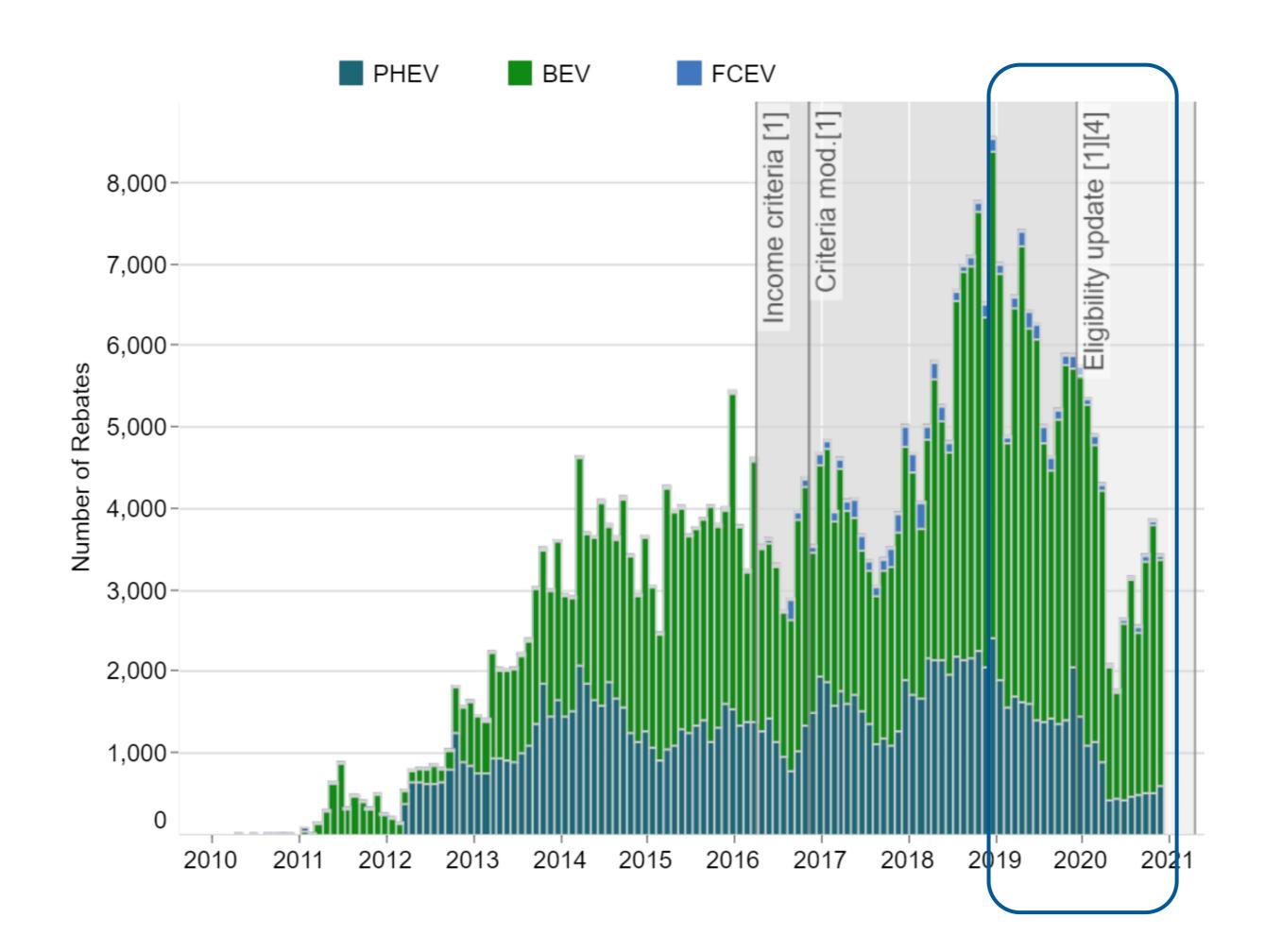
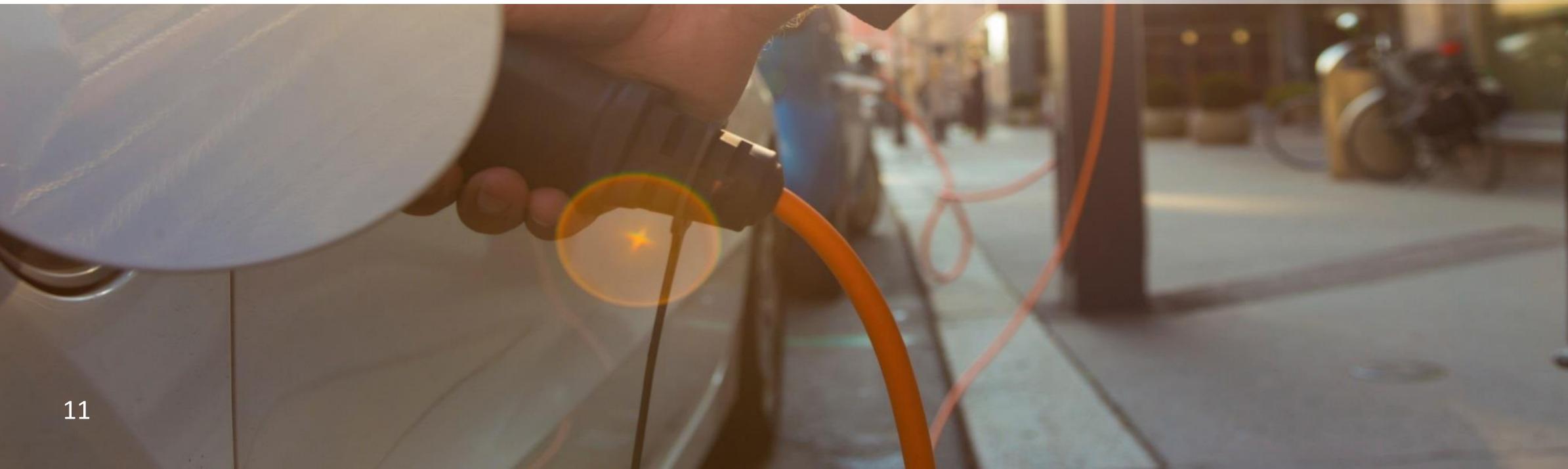

** For standard applications only; no waitlist for income-qualified increased rebates.

Image from https://cleanvehiclerebate.org/sites/default/files/attachments/CVRP_Disruptions_Fact_Sheet.pdf

Approved Applications Over Time: CY 2019 Purchases/Leases

5/3/21 image from <u>https://cleanvehiclerebate.org/eng/rebate-statistics</u>


With COVID exemptions, rebate applications for calendar-year (CY) 2019 purchases/leases for individuals spanned 1/1/2019 – 1/6/2021

16% applied in 2020.

Data Summary Rebate-Application, Participant-Survey & Vehicle-Registration Data

Data Summary

Program Application and Survey Data

	CY 2019	CY 2020	Total
Rebates	<i>N</i> = 63,096 \$155,312,369	N = 37,201 \$82,019,025	> 100k rebated EVs ~ \$240M in rebates
Survey responses (weighted*)	<i>n</i> = 6,496	<i>n</i> = 4,331	~ 11k survey responses

Sales Data Monthly CA new-vehicle registration data (licensed from IHS Markit)

* Survey data weighted to represent the program population along the dimensions of technology type, vehicle model, county and buy vs. lease using iterative proportional fitting (aka raking method). Details in appendix.

Rebate Application Data Vehicles Purchased/Leased in CY 2019

Total

CVRP
rebates
\$27,978,300
(18%)
\$1,893,500
(1%)
\$116,141,069
(75%)
\$9,299,500
(6%)

63,096 \$155,312,369

PHEV = plug-in hybrid electric vehicle BEVx = range-extended battery electric vehicle (BMW i3 REx) BEV = battery electric vehicle FCEV = fuel-cell electric vehicle

Methodology

Rebated reductions =

E = emissions *i* = each individual **baseline** and **rebated** vehicle pair

carbon intensity fuel consumption vehicle miles traveled

percent of miles traveled on fuel f

Estimates are simplified by **Scaling**

E.g., Warranty-life: 150,000 miles for PHEVs (required by ZEV regulations) and 100,000 miles for others (typical)

$E_{i,\text{baseline}} - E_{i,\text{rebated}}$

$E_{i,baseline} = CI_{gasoline}(CY) * FC_{gasoline}(MY) * VMT_{gasoline}(d,r)$

$E_{i,\text{rebated}} = \sum_{f} (CI_f(CY) * FC_f(m, MY) * [VMT_f(d, r) * P_f(m, MY)])$

Operational Timeframe

Methodology Details

Rebated reductions = $\sum_{i} (E_{i,\text{baseline}} - E_{i,\text{rebated}})$

where:

E = annual emissions

i = each individual **baseline** and **rebated** vehicle pair

$$E_{i,baseline} = CI_{gasoline}(CY) * F$$

where:

 $CI_{\text{gasoline}} = \text{carbon intensity}$ of gasoline [life-cycle CO₂e per gallon] *FC*_{gasoline} = **fuel consumption** rate [gallons per mile]; varies by model year (MY) of the paired rebated vehicle

$$E_{i,\text{rebated}} = \sum_{f} (CI_{f}(CY) * FC_{f}(CY))$$

where:

f = fuel used by rebated vehicle {gasoline, electricity, hydrogen} CI_f = carbon intensity of fuel f [life-cycle CO₂e per unit of fuel] FC_f = fuel consumption rate [gal, kWh, or kg of fuel f per mile]; varies by model (m) and model year (MY) $P_f =$ **percent of miles** traveled on fuel *f*, which varies by *m* for BEVx vehicles, *m* and *MY* for PHEVs.

Operational Timeframe

Estimates are simplified by **Scaling** first-year emission reductions to represent various operational-timeframes. E.g., Warranty-life: 150,000 miles for PHEVs (required by ZEV regulations) and 100,000 miles for others (typical)

$C_{\text{gasoline}}(MY) * VMT_{\text{gasoline}}(d,r)$

*VMT*_{gasoline} = **vehicle miles traveled** annually; varies by the paired rebated vehicle's drivetrain (d), and, for BEVs, range subcategory (r)

$(m, MY) * [VMT_f(d, r) * P_f(m, MY)])$

VMT_f = vehicle miles traveled annually on fuel f; varies by drivetrain category (d), and, for BEVs only, range subcategory (r)

First-Year Inputs

Input Source	es	
Inputs	Primary Source	
Baseline-Vehicle Fuel Efficiency	CA sales-wgtd ave. calculated by MY	
Annual VMT	UCD Survey data (by tech type)	
Gasoline Carbon Intensity	Low Carbon Fuel Standard 2019 Cl	
Electricity Carbon Intensity	LCFS 2019 CI	
PHEV Percent Electric	Lit./curve fit . (e- range vs. e-VMT)	
Hydrogen Carbon Intensity	LCFS in CARB FP	
BEVx Percent Electric	Lit./curve fit. (e- range vs. e-VMT)	

VMT = vehicle miles traveled ton GHGs = metric ton of CO₂-equivalent emissions

First-Year Inputs & Sensitivity Analysis

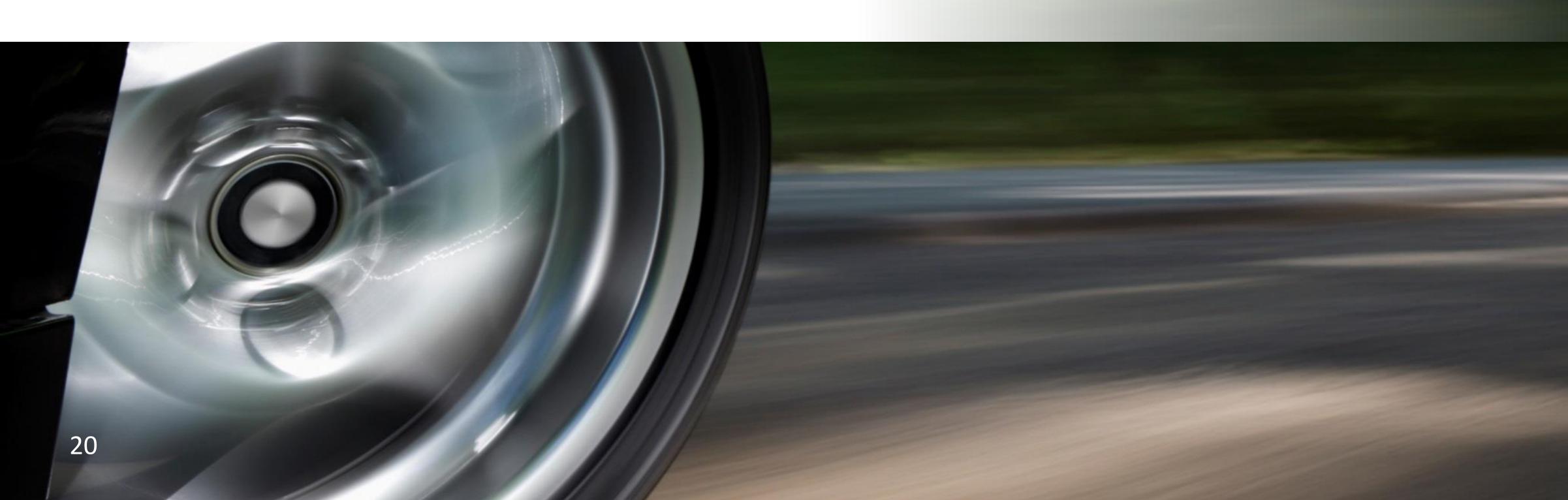
Inp		Sensitivity					
Inputs	Low	Primary Source	High	Low	Prim	ary	High
Baseline-Vehicle Fuel Efficiency	40 MPG	CA sales-wgtd ave. calculated by MY	U.S. car-and- truck	-40%		19	%
Annual VMT	-23% to -40%	UCD Survey data (by tech type)	+0% to +15%	-28%)	10%	
Gasoline Carbon Intensity	CY 2030	Low Carbon Fuel Standard 2019 Cl	CY 2010		-19%	8%	
Electricity Carbon Intensity	U.S. avg.	LCFS 2019 CI	CY 2030		-16%	10%	
PHEV Percent Electric	12%	Lit./curve fit . (e- range vs. e-VMT)	74.5%		-7%	39	
Hydrogen Carbon Intensity	+41%	LCFS in CARB FP	-41%		-1%	1%	
BEVx Percent Electric	84%	Lit./curve fit. (e- range vs. e-VMT)	100%		-0.1%	0.1%	

VMT = vehicle miles traveled ton GHGs = metric ton of CO_2 -equivalent emissions

2.0 2.5 3.0 3.5 4.0 4.5

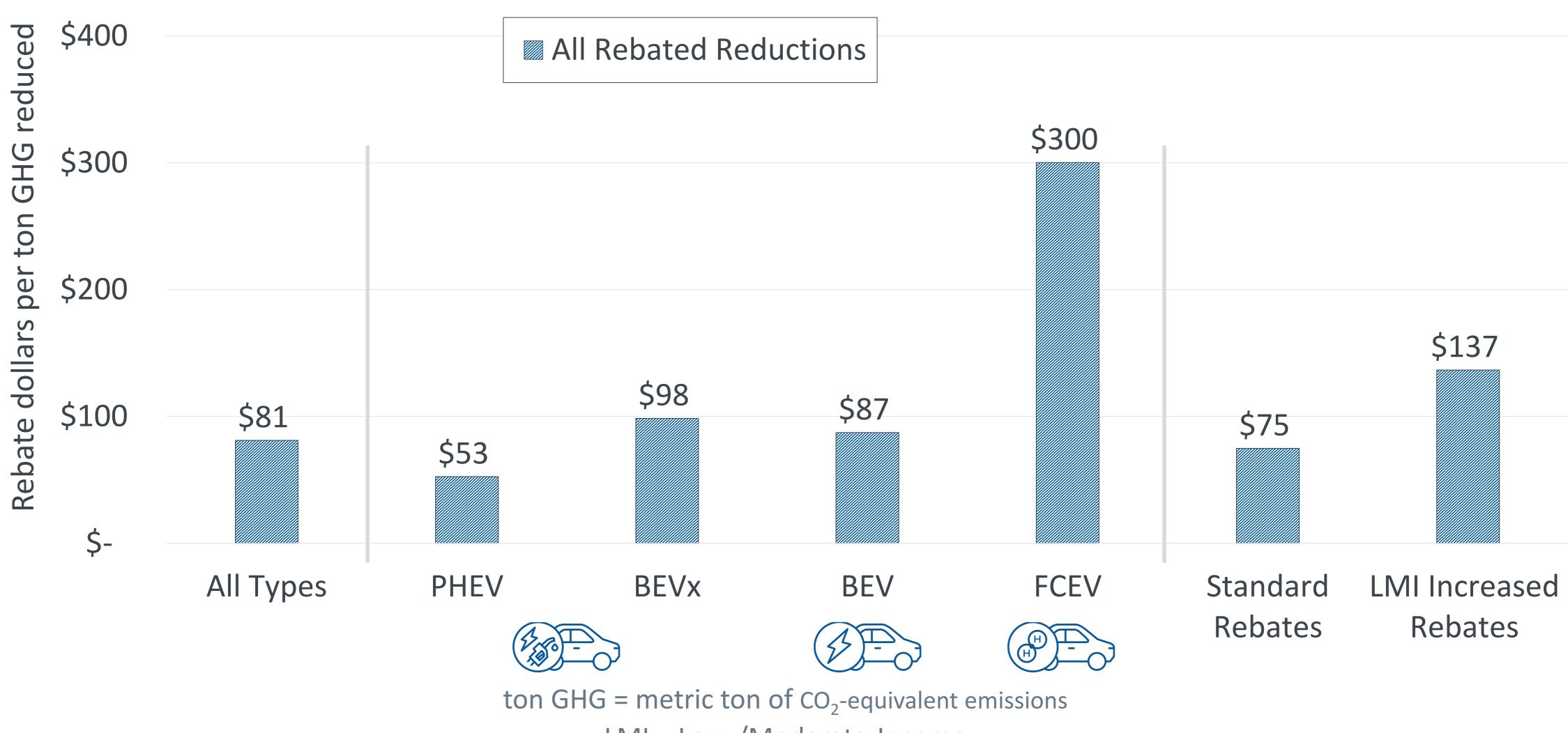
Average First-Year GHG Reductions Per Vehicle (tons)

Results & Discussion All Rebated Reductions, Rebate Influence, Changes Over Time

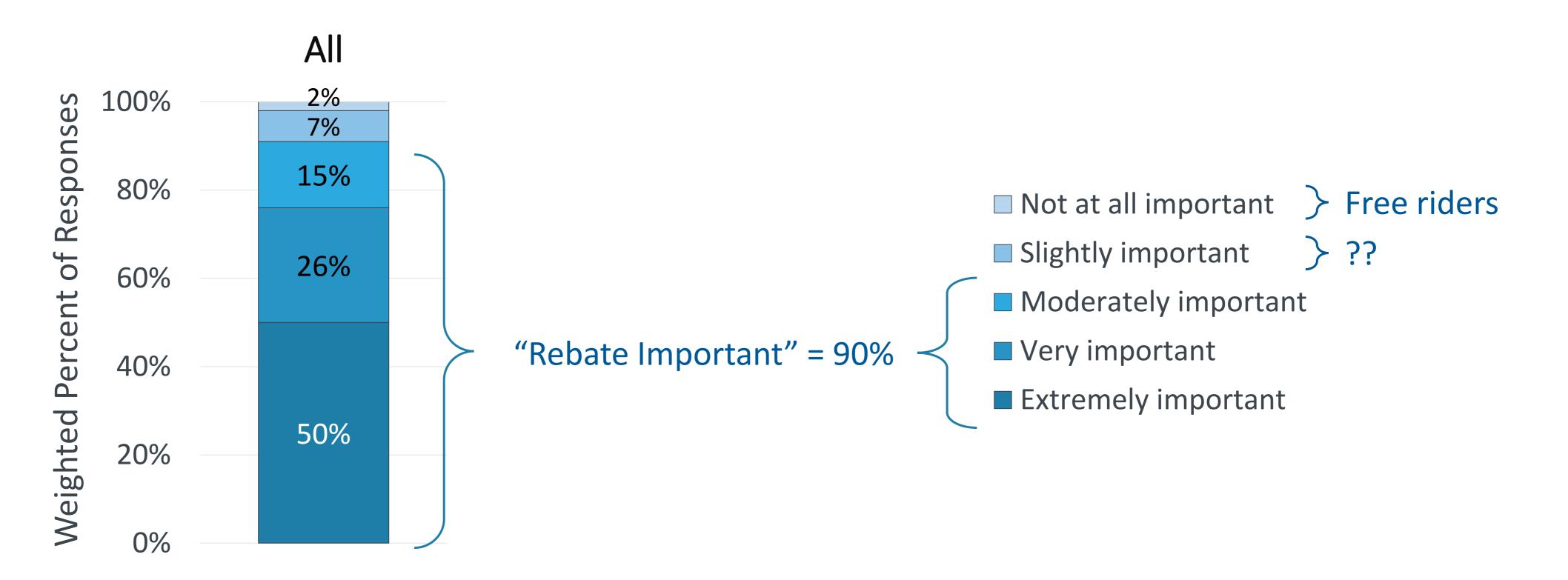


All Rebated Reductions

GHG Reduction & Cost-Effectiveness: All Rebated Vehicles 2019 Purchases/Leases, by Technology Type


Te	echnology type	Total vehicles	Average first-year GHG reductions per vehicle (tons)	Average warranty- life GHG reductions per vehicle (tons)	Total warranty-life GHG reductions (tons)	Rebate dollars pe warranty-life ton GHGs reduced
(John -	PHEV	N = 16,177 (26%)	3.0	33	533k (28%)	\$5
	BEVx	N = 703 (1%)	2.9	27	19k (1%)	\$9
	BEV	N = 44,440 (70%)	3.8	30	1,330k (70%)	\$8
	FCEV	N = 1,776 (3%)	2.2	17	31k (2%)	\$30
	All	N = 63,096	3.5	30	1,913k	\$8 72,504,637
	HGs = metric PA GHG equiv	2	os://www.epa.gov/ene	rgy/greenhouse-gas-equiv	alencies-calculator	Incandescent lamps switched to LEDs (U.S. Grid Mix)

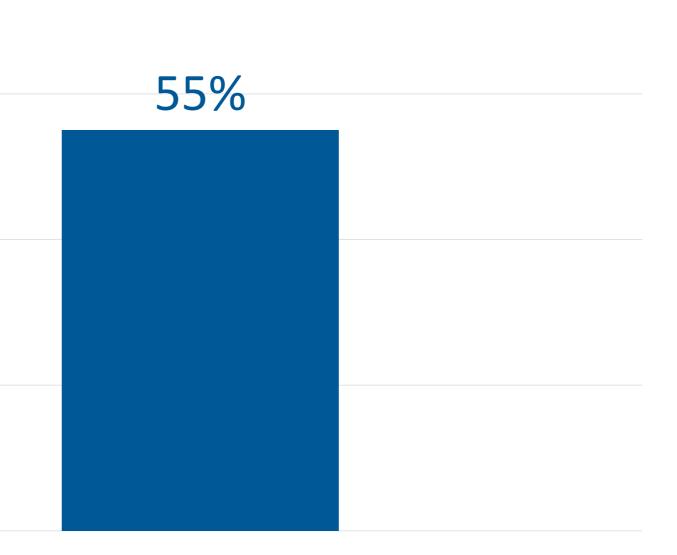
CVRP Cost-Effectiveness: All Rebated Reductions 2019 Purchases/Leases, Warranty-Life


LMI = Low-/Moderate-Income

Rebate Importance 2019 Purchases/Leases

CVRP Consumer Survey: 2017–2019 edition. Filtered question n = 6,418. Starting Dec. 2019, PEVs with base MSRP greater than \$60k became ineligible.

How important was the state rebate in making it possible for you to acquire your clean vehicle?


Rebate-Essential Participants 2019 Purchases/Leases

S	100%	
Responses	80%	
of	60%	
hted Percent	40%	
Weight	20%	
	0%	

CVRP Consumer Survey: 2017–2019 edition. Filtered question n = 6,457. Starting 12/2019, PEVs with base MSRP > \$60k became ineligible.

Would not have purchased/leased their EV without the state rebate

Previous Work on Rebate Essentials: Summary

Characterizing California Electric Vehicle Consumer Segments

BECC Conference, 20 October 2016, Baltimore

the Transportat	Research Reco tion Research Bo		The National Academies of SCIENCES • ENGINEERING • MED TRANSPORTATION RESEARCH BOARD	TRR jo
e A	Plug-In Hybrid Electric V ctric Vehicle Rebate Characterizing California Elect Brett Williams, M.Phil. (cantab), Ph.D. Clair Johnson, Ph.D.		nts	
Article information ~ Abstract California's Clea	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	200 00 <t< th=""><th>Which of the following statements best describes your interest in a regically Targeting Plug-in Characteristics of "Rebs Brett V 1) 3980 Sherman</th><th>a Electric Veh ate-Essential" Williams ¹⁾ John A Center for Sustainable I Street Suite 170, San Dia il: brett.williams@energy ceedings of the 31st Intern ts to increase electric-v e-ridership. Building u veen rebate influence a ns; and experience).), it models adopters of instances. Changes relation</th></t<>	Which of the following statements best describes your interest in a regically Targeting Plug-in Characteristics of "Rebs Brett V 1) 3980 Sherman	a Electric Veh ate-Essential" Williams ¹⁾ John A Center for Sustainable I Street Suite 170, San Dia il: brett.williams@energy ceedings of the 31 st Intern ts to increase electric-v e-ridership. Building u veen rebate influence a ns; and experience).), it models adopters of instances. Changes relation

KEY WORDS: electric vehicle (EV) consumer characteristics, target market s

supportive policies.

BECC Conference presentation (Williams & Johnson 2016)

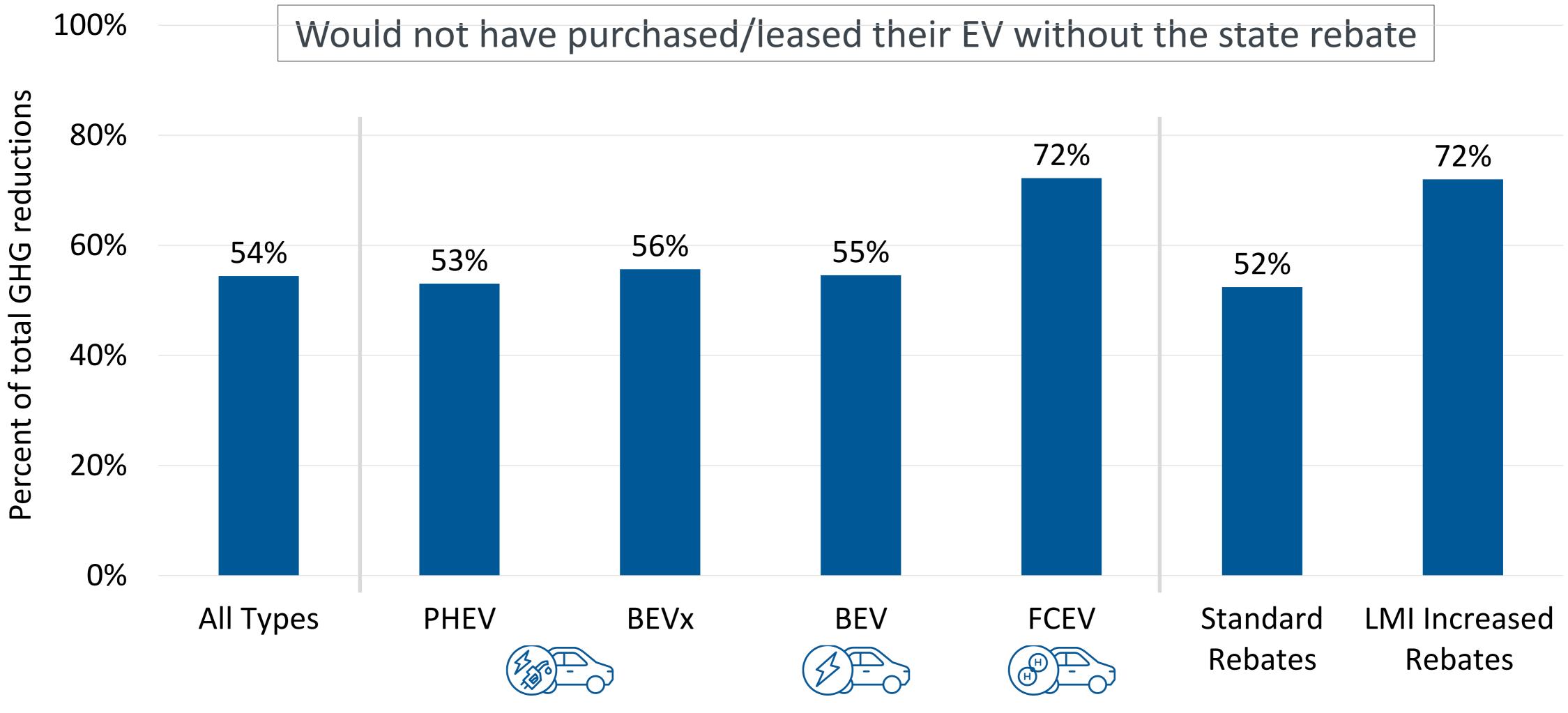
CRR journal article (Johnson and Williams 2017)

National Academies TRB poster (Williams and Johnson 2017)

ectric Vehicle Rebates and Outreach Using Essential" Consumers in 2016–2017

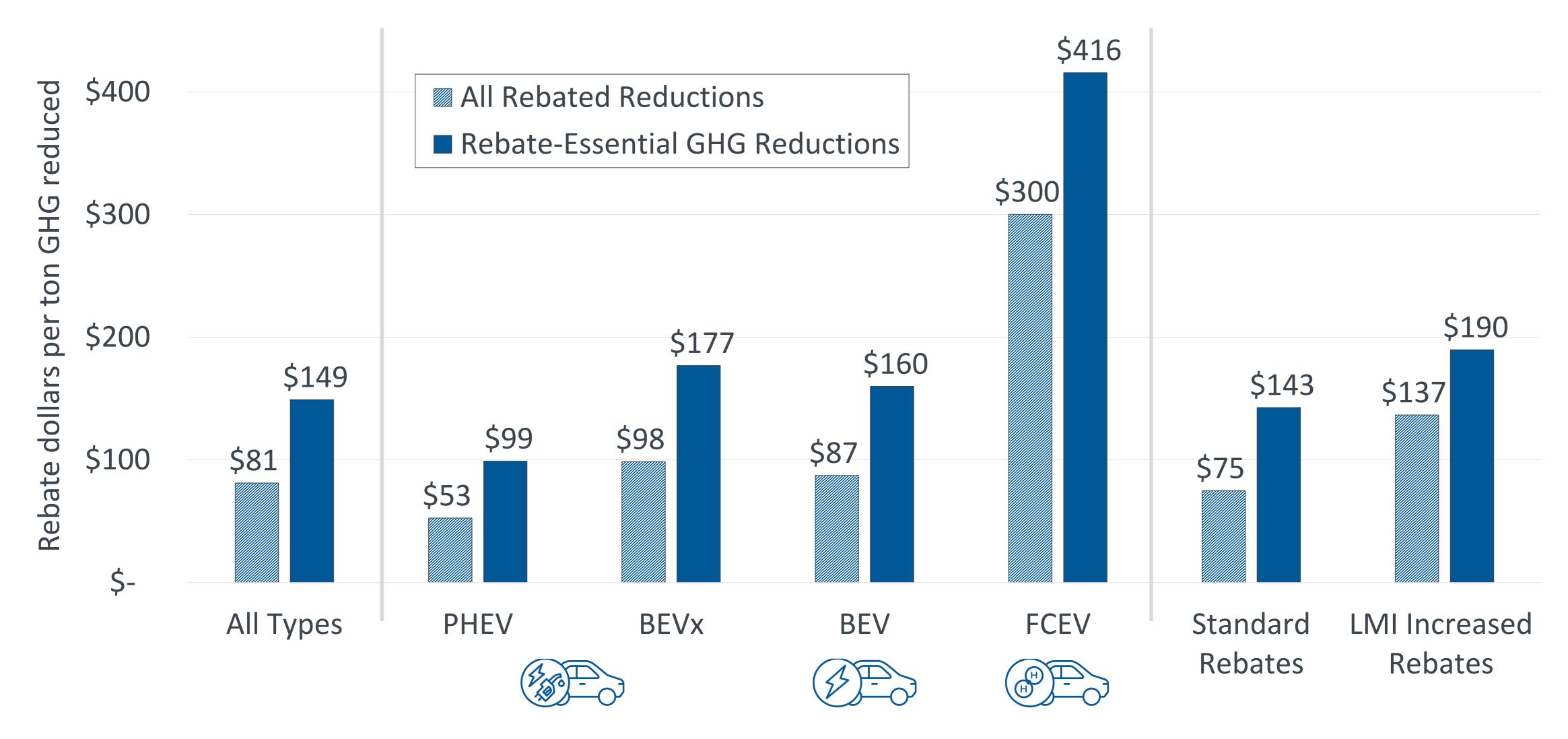
EVS 31 paper (Williams & Anderson 2018)

ms¹⁾ John Anderson¹⁾


Report for NYSERDA

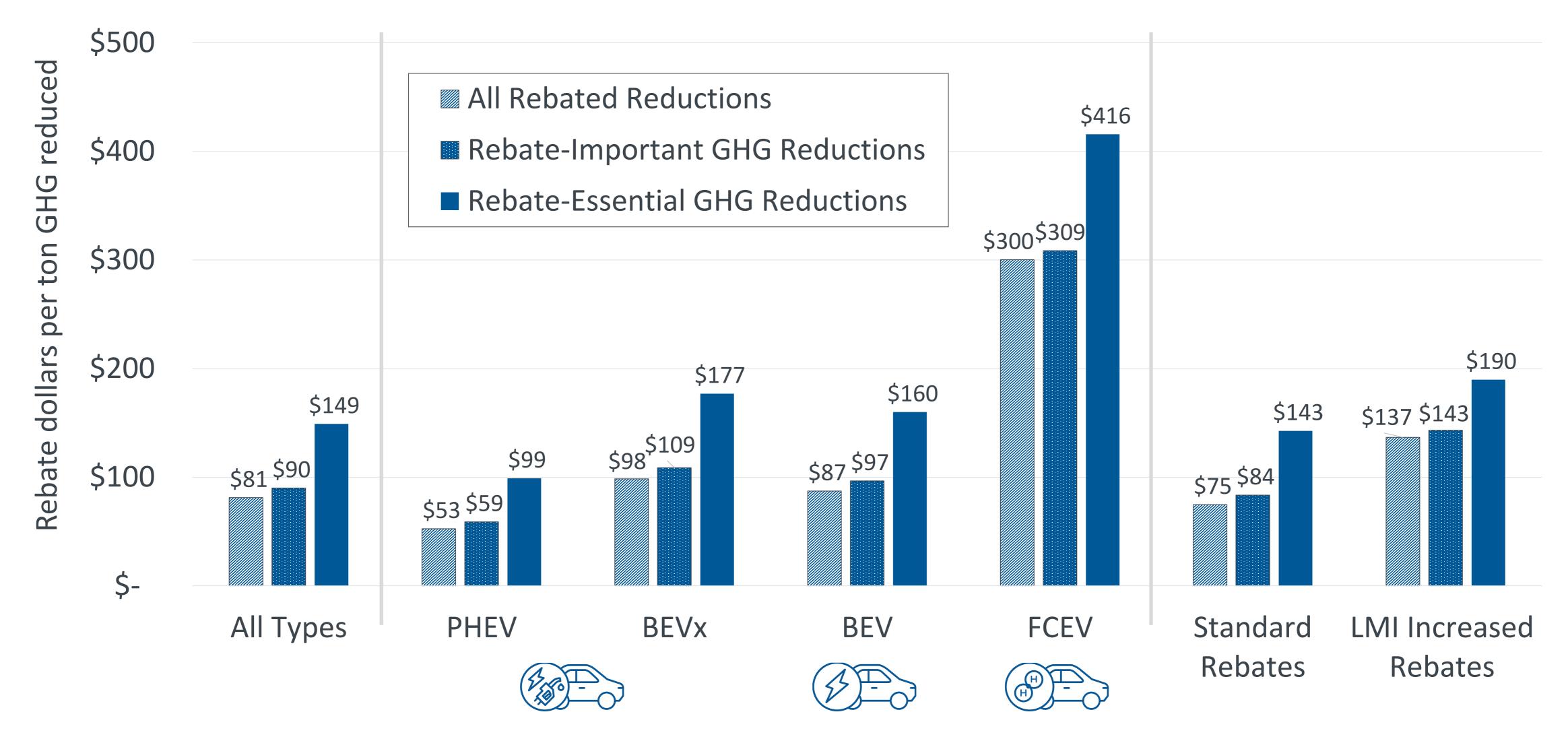
(Williams & Anderson 2021)

Rebate-Essential Reductions: Warranty Life 2019 Purchases/Leases



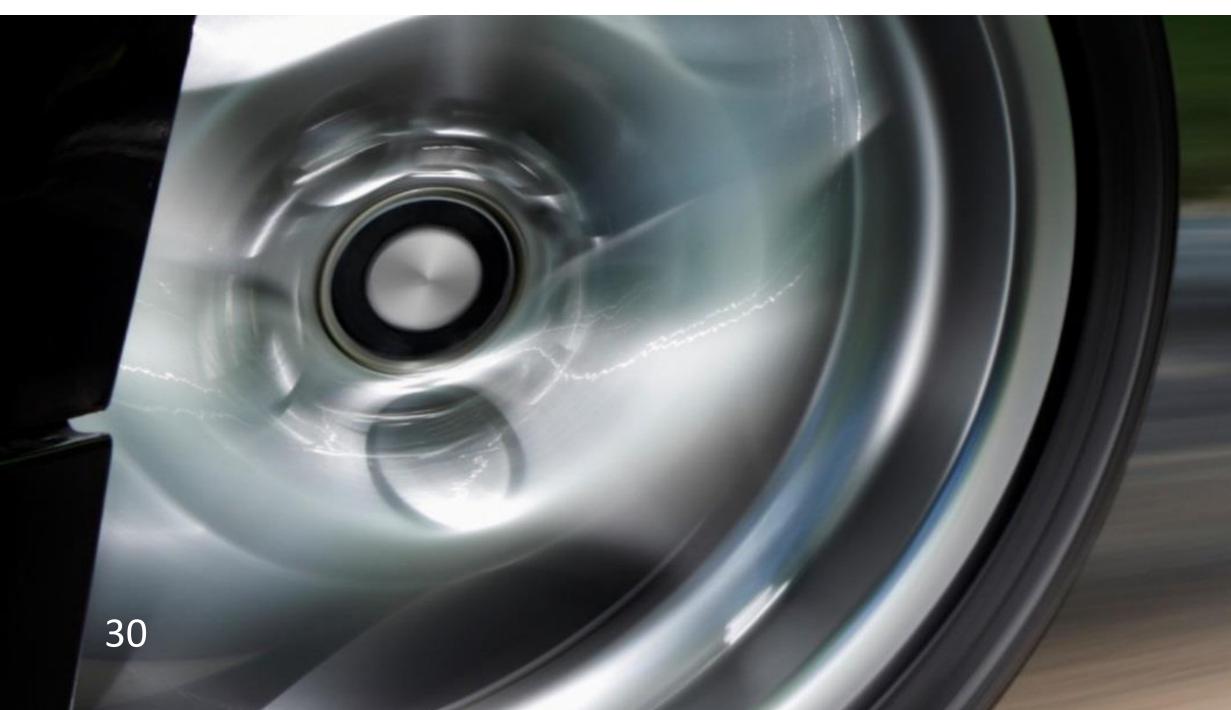
LMI = Low-/Moderate-Income

CVRP Cost-Effectiveness: *Rebate-Essential* Reductions 2019 Purchases/Leases, Warranty-Life

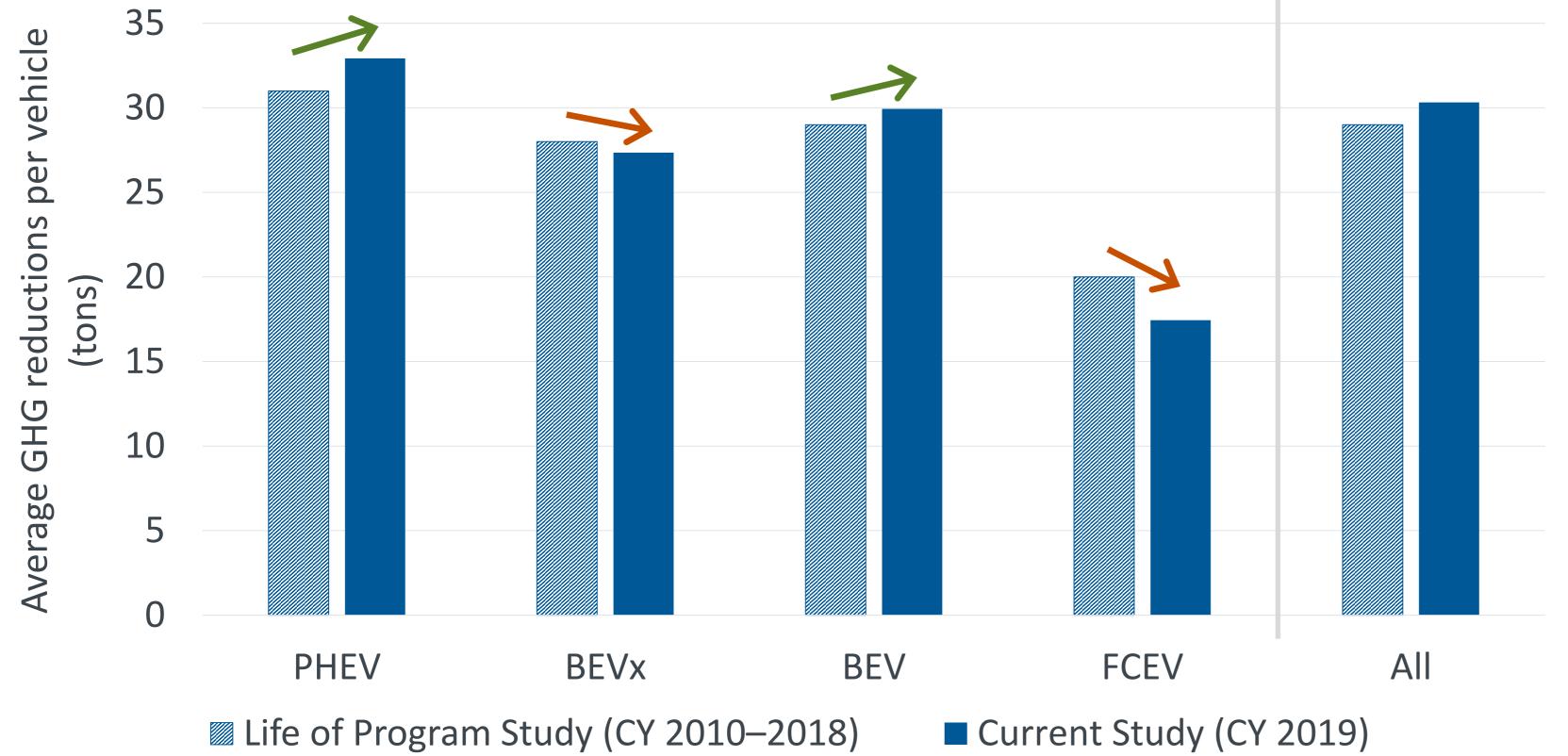


ton GHG = metric ton of CO₂-equivalent emissions; LMI = Low-/Moderate-Income

Cost-Effectiveness & Rebate Influence 2019 Purchases/Leases, Warranty-Life



ton GHG = metric ton of CO_2 -equivalent emissions; LMI = Low-/Moderate-Income



Changes Over Time Life-of-Program Through mid-2018 (*Energies*) vs. 2019 (IEPEC)

Comparisons: Per-Vehicle Reductions, Warranty Life Life-of-Program Thru 2018 (journal *Energies*¹) vs. 2019 (IEPEC procs.²)

¹https://cleanvehiclerebate.org/eng/content/refining-estimates-fuel-cycle-greenhouse-gas-emission-reductions-associated-cvrp ²https://cleanvehiclerebate.org/en/content/evaluating-cost-effectiveness-greenhouse-gas-emission-reductions-associated-statewide ton GHGs = metric ton of CO₂-equivalent emissions

 BEVx and FCEV decreases largely from an improving gasoline baseline

BEV and PHEV increases
 largely from improving
 electricity CI

 And, to a lesser extent, increasing fuel efficiency

Changes Over Time Draft 2020 Results In "Additional Details" Appendix

Conclusion Selected Summary, Recommendations, Limitations & Next Steps

Summary of Select Findings

	Warranty-life GHG savings (tons)	Rebate dollars per warranty-life ton reduced	<i>Rebate-Essential</i> GHG Reductions (percent of total)	Rebate dollars per <i>Rebate-Essential</i> ton reduced
CY 2019	From 17 tons (FCEVs) to 33 tons (PHEVs)	From \$53 (PHEVs) to \$300 (FCEVs) per rebated ton	54% (72% for Increased Rebate)	From \$99 (PHEVs) to \$416 (FCEVs) per <i>RE</i> ton
CY 2020 (partial update)	From 16t (FCEVs) to 34t (PHEVs)	From \$45 (PHEVs) to \$304 (FCEVs) per rebated ton	39% (67% for Increased Rebate)	From \$96 (PHEVs) to \$356 (FCEVs) per <i>RE</i> ton

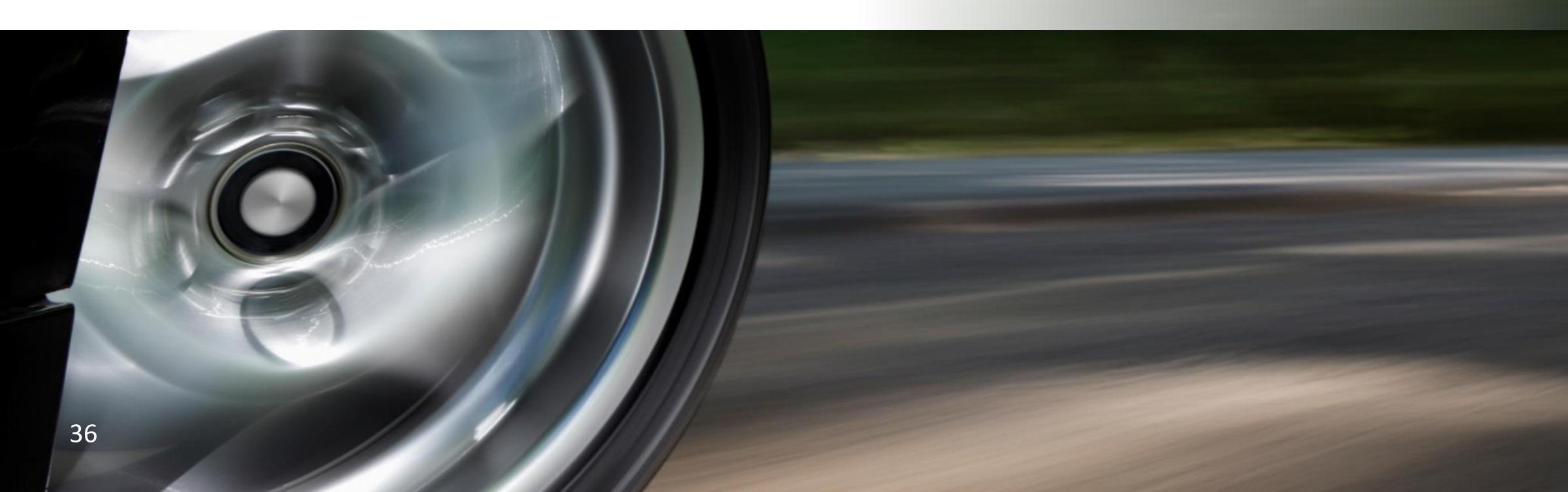
- Results particularly sensitive to baseline vehicle fuel efficiency and VMT/lifetime
- Optimizing cost-effectiveness in isolation can have undesirable consequences (e.g., decreased share of increased rebates for lower-income consumers, who are highly influenced by rebates)
- The gasoline baseline is improving, raising the bar
- improve

• 2020 paints a different picture: electricity CI, EV efficiency, and *Rebate Essentiality* did not

ton GHGs = metric ton of CO_2 -equivalent emissions. VMT = vehicle miles traveled. CI = carbon intensity

Funding Plan Recommendations

Consider:


- Referencing annual LCFS CI benchmarks for gasoline CI – Gasoline consumed in California has become cleaner since 2010 under the LCFS
- Modeling new gasoline vehicle fuel efficiency based on recent vehicle sales
- Referencing the latest program data for fuel efficiency of EVs & e-VMT %
- Referencing the latest available studies to derive annual VMT estimates
- For GHGs, using warranty life and an out-of-state vehicle leakage adjustment rather than 2.5-year project life

Limitations & Next Steps

Limitations & Next Steps: Further Refinement

Ongoing opportunity for further refinement using:

- Additional participant-specific inputs - Enhance baseline vehicles based on survey data on counterfactual purchase decisions, or other methods emerging in literature
 - Base fuel CI on electric utility territory and/or survey data on solar use
 - Incorporate predictive *Rebate Essentiality*
- Time-variant inputs for fuel CI and annual VMT – Rather than scaling up first-year emissions
- Other more detailed inputs

CI = carbon intensity VMT = vehicle miles traveled

Limitations & Next Steps: Broadening Scope

- Additional research to further improve understanding of rebate influence, attribution, and cost-effectiveness
- Quantifying full vehicle life-cycle emissions impacts and other vehicle pollutants
- Evaluating potential climate effects on vehicle performance Assessing travel-behavior-change effects and/or household-level
- impacts

– Such as vehicle substitution for lengthy trips

• Exploring market spillover (e.g., network) effects

References (1 of 4)

ANL (Argonne National Laboratory). 2020. "The Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET®) Model." Chicago. <u>https://greet.es.anl.gov/</u>

Alliance for Automotive Innovation (Auto Innovators). 2021a. "Advanced Technology Vehicle Sales Dashboard." Data compiled by the Alliance for Automotive Innovation using information provided by IHS Markit (2011–2018, Nov 2019–2021) and Hedges & Co. (Jan 2019–Oct 2019). Data last updated 10/6/2021. Retrieved 11/3/2021 from https://www.autosinnovate.org/resources/electric-vehicle-sales-dashboard

Alliance for Automotive Innovation (Auto Innovators). 2021b. "Economic Insights: State Facts." https://www.autosinnovate.org/resources/insights/ca

Boston, D.; A. Werthman. 2016. "Plug-in Vehicle Behaviors: An analysis of charging and driving behavior of Ford plug-in electric vehicles in the real world." World Electr. Veh. J. 2016, 8, 926–935.

California Code of Regulations. 2009. Zero-Emission Vehicle Standards for 2009 through 2017 Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles.

———. 2012. Zero-Emission Vehicle Standards for 2018 and Subsequent Model Year Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles.

California State Auditor. 2021. "Report 2020-114." www.auditor.ca.gov

CARB (California Air Resources Board). 2017. "California's Advanced Clean Car Midterm Review Appendix G: Plug-in Electric Vehicle In-Use and Charging Data Analysis." <u>https://ww2.arb.ca.gov/resources/documents/2017-midterm-review-report</u>

———. 2019. "Proposed Fiscal Year 2019-20 Funding Plan for Clean Transportation Incentives." <u>https://ww2.arb.ca.gov/sites/default/files/2019-</u> 09/fy1920fundingplan.pdf

———. 2020. "Low Carbon Fuel Standard Regulation." 2020. <u>https://ww2.arb.ca.gov/sites/default/files/2020-07/2020 lcfs fro oal-</u> approved unofficial 06302020.pdf

———. 2021. "Low Carbon Fuel Standard Annual Updates To Lookup Table Pathways." March 15, 2021. https://ww2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/fuelpathways/comments/tier2/2021 elec update.pdf? ga=2.15416246.123794853.16 16602850-1818811838.1579023467

References (2 of 4)

———. 2022. "LOW CARBON FUEL STANDARD ANNUAL UPDATES TO LOOKUP TABLE PATHWAY." January 24, 2022. https://ww2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/fuelpathways/comments/tier2/2022_elec_update.pdf

Carlson, B. "Electric Vehicle Mile Traveled (eVMT): On-Road Results and Analysis." 2015. http://energy.gov/sites/prod/files/2015/07/f24/vss171_carlson_2015_p.pdf

Chakraborty, D., S. Hardman, and G. Tal. 2021. "Integrating Plug-in Electric Vehicles (PEVs) into Household Fleets – Factors Influencing Miles Traveled by PEV Owners in California." <u>https://escholarship.org/uc/item/2214q937</u>

CVRP (Clean Vehicle Rebate Project). 2021a. "Income Eligibility." 2021. <u>https://cleanvehiclerebate.org/eng/income-eligibility</u>

CVRP (Clean Vehicle Rebate Project). 2021b. "IMPLEMENTATION MANUAL FOR THE CLEAN VEHICLE REBATE PROJECT." <u>https://cleanvehiclerebate.org/sites/default/files/docs/nav/transportation/cvrp/documents/CVRP-Implementation-Manual.pdf</u>

Demuro, D. 2019. "Buying a Car: How Long Can You Expect a Car to Last?" 2019. <u>https://www.autotrader.com/car-shopping/buying-car-how-long-can-you-expect-car-last-240725</u>

DOE and EPA (United States Department of Energy and Environmental Protection Agency). 2018. "Fueleconomy.Gov." 2018. <u>https://www.fueleconomy.gov/</u>

DOE and EPA (United States Department of Energy and Environmental Protection Agency). 2021. "Fueleconomy.Gov." 2021. <u>https://www.fueleconomy.gov/</u>

Duhon, A., K. Sevel; S. Tarnowsky, P. Savagian. 2015. "Chevrolet Volt Electric Utilization." SAE Int. J. Altern. Powertrains 2015, 4, 269–276.

EERE (United States Office of Energy Efficiency and Renewable Energy). 2020. "Electric Car Safety, Maintenance, and Battery Life." 2020.

References (3 of 4)

EPA (United States Environmental Protection Agency). 2021a. "Emissions & Generation Resource Integrated Database (EGRID)." Washington, DC: Office of Atmospheric Programs, Clean Air Markets Division. <u>https://www.epa.gov/egrid</u>

———. 2021b. "The 2020 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975." https://www.epa.gov/automotive-trends

———. 2021c. "Greenhouse Gas Equivalencies Calculator." <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>

———. 2021d. "2020 EPA Automotive Trends Report." July 27, 2021. <u>https://www.epa.gov/automotive-trends/explore-automotive-trends/explore-automotive-trends-data</u>

Grubert, E., J. Stokes-Draut, A. Horvath, W. Eisenstein. 2020. "Utility-specific projections of electricity sector greenhouse gas emissions: a committed emissions model-based case study of California through 2050." Environ. Res. Lett. 15 1040a4. <u>https://</u>doi.org/10.1088/1748-9326/abb7ad

Hardman, S. 2019. "Understanding the Early Adopters of Fuel Cell Vehicles." <u>https://doi.org/10.7922/G2736P4V</u>

Idaho National Laboratory. 2015. "Plug-in Electric Vehicle and Infrastructure Analysis." https://inldigitallibrary.inl.gov/sites/sti/6799570.pdf

Jenn, A., J.H. Lee, S. Hardman, and G. Tal. 2020. "An In-Depth Examination of Electric Vehicle Incentives: Consumer Heterogeneity and Changing Response over Time." Transportation Research Part A: Policy and Practice 132 (February): 97–109. https://doi.org/10.1016/j.tra.2019.11.004

Johnson, C., and B. Williams. 2017. "Characterizing Plug-In Hybrid Electric Vehicle Consumers Most Influenced by California's Electric Vehicle Rebate:" Transportation Research Record 2628 (January): 23–31. <u>https://doi.org/10.3141/2628-03</u>

Lattanzio, R. K., and C. E. Clark. 2020. "Environmental Effects of Battery Electric and Internal Combustion Engine Vehicles."

References (4 of 4)

Marmiroli, B., M. Messagie, G. Dotelli, and J. van Mierlo. 2018. "Electricity Generation in LCA of Electric Vehicles: A Review." Applied Sciences (Switzerland). MDPI AG. <u>https://doi.org/10.3390/app8081384</u>

Nealer, R., D. Reichmuth, and D. Anair. 2015. "Cleaner Cars from Cradle to Grave How Electric Cars Beat Gasoline Cars on Lifetime Global Warming Emissions." www.ucsusa.org

Pallonetti, N., and B. D. H. Williams. 2021. "Refining Estimates of Fuel-Cycle Greenhouse-Gas Emission Reductions Associated with California's Clean Vehicle Rebate Project with Program Data and Other Case-Specific Inputs." Energies 14 (15). <u>https://doi.org/10.3390/en14154640</u>

Pallonetti, N., and B. D. H. Williams. 2022. "Evaluating the Cost-Effectiveness of Greenhouse Gas Emission Reductions Associated with Statewide Electric Vehicle Rebate Programs in California and Massachusetts in 2019." https://cleanvehiclerebate.org/sites/default/files/attachments/Cost-Effectiveness-of-GHG-Reductions-from-Rebated-EVs-in-CA-and-MA.pdf

Tal, G., S. S. Raghavan, V. C. Karanam, M. Favetti, K. M. Sutton, J. M. Ogunmayin, J. H. Lee, et al. 2020. "Advanced Plug-in Electric Vehicle Travel and Charging Behavior Final Report."

Williams, B. 2020. "EV Purchase Incentives: Program Design, Outputs, and Outcomes of Four Statewide Programs with a Focus on Massachusetts." In Behavior, Energy, and Climate Change Conference (BECC). Washington D.C. <u>https://beccconference.org/wp-content/uploads/2020/12/Multi-state-EV-rebate-Impacts-Brett-Williams_2.pdf</u>

Williams, B., and J. Anderson. 2018. "Strategically Targeting Plug-in Electric Vehicle Rebates and Outreach Using Characteristics of 'Rebate-Essential' Consumers in 2016-2017." In 31st International Electric Vehicles Symposium. Kobe, Japan. <u>https://energycenter.org/sites/default/files/docs/nav/resources/EVS31_TargetingRebateEssentialConsumers_revised.pdf</u>

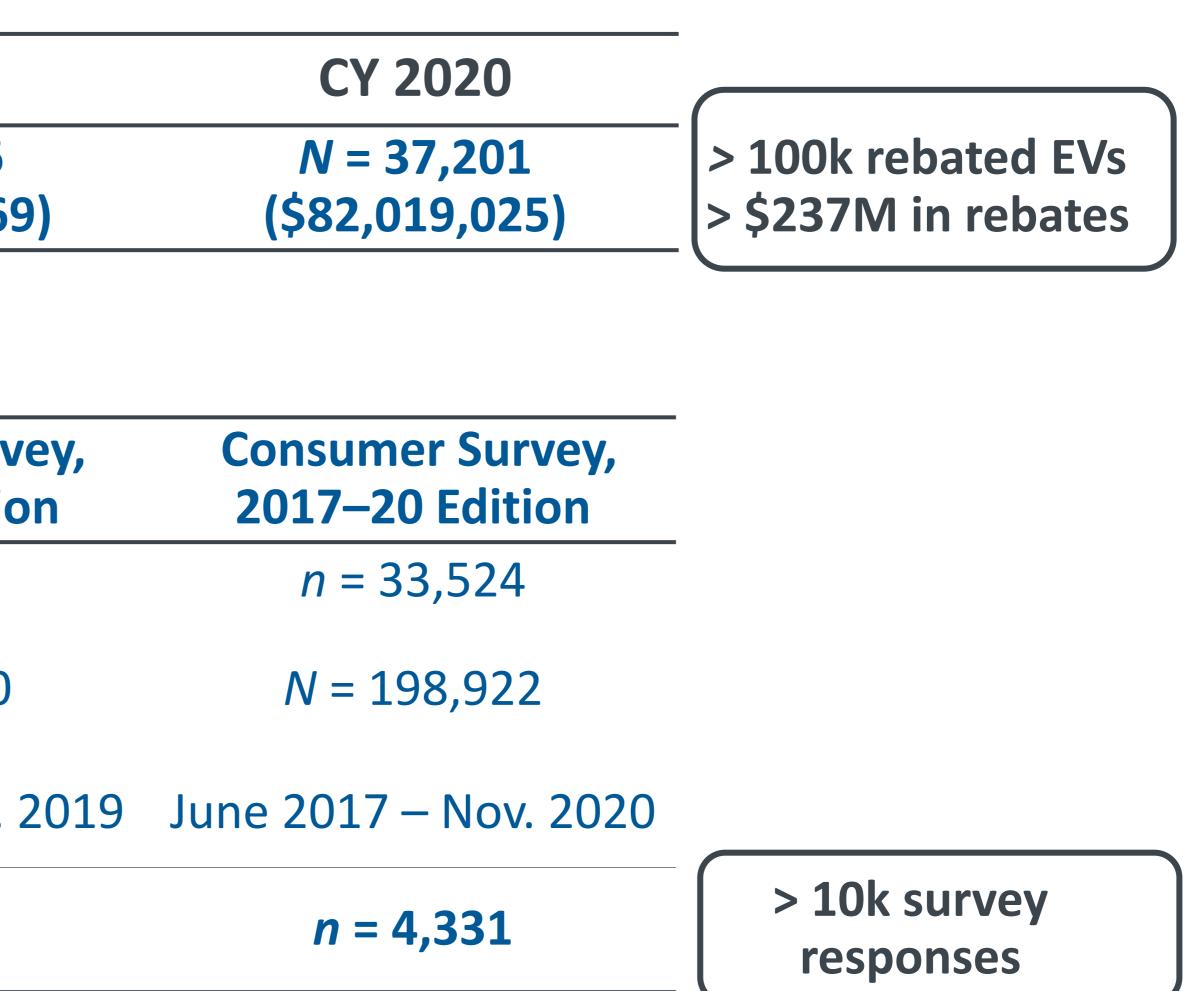
Williams, B., and N. Pallonetti. 2021. "CVRP CY 2019 Data Brief: Vehicle Replacement & Incentive Influence." <u>https://cleanvehiclerebate.org/sites/default/files/attachments/CVRP-2019-Outcomes_2021-07-13.pdf</u>

Program Application & Survey Data Summary

Application Data

CY 2019

Rebated vehicles


N = 63,096 (\$155,312,369)

Survey Data

	Consumer Surv 2017–19 Editio
Participant survey responses	<i>n</i> = 26,464
Weighted* to represent program participants	N = 153,890
Vehicle purchases/leases	June 2017 – Dec.
Responses filtered by CY purchases/leases	<i>n</i> = 6,496

* Survey data weighted to represent the program population along the dimensions of technology type, vehicle model, county and buy vs. lease using iterative proportional fitting (aka raking method)

Primary Inputs: Carbon Intensity (CI) of Fuel Lifecycles

Fuel	CY 2019	CY 2020	Approach, Sources
Gasoline (gCO ₂ e/gal)	10,799	10,654	LCFS benchmarks, converted from (CARB 2020)
Electricity (gCO ₂ e/kWh)	273	273 (CY19 value used for "partially updated" results) 276 (LCFS draft CY20 value, used for "draft" results)	LCFS updates, converted from (CARB 2020; 2021; 2022)
Hydrogen (gCO ₂ e/kg)	1	.3,393	LCFS weighted mix: 33% renewable, converted from (CARB 2020)

LCFS = Low Carbon Fuel Standard References provided at end of presentation

Sensitivity of CY 2019 first-year GHG reductions per vehicle: Carbon intensity

Carbon intensity (CI) scenario	All	PHEV	BEVx	BEV	FCEV
Primary (LCFS 2019 CI)	3.5	3.0	2.9	3.8	2.2
Gasoline Low Cl	2.9 (-19%)	2.4 (-18%)	2.3 (-19%)	3.1 (-19%)	1.5 (-32%)
Gasoline High Cl	3.8 (+8%)	3.2 (+8%)	3.1 (+9%)	4.1 (+8%)	2.5 (+15%)
Electricity Low Cl	3.9 (+10%)	3.2 (+8%)	3.2 (+12%)	4.2 (+11%)	n.a
Electricity High CI	3.0 (-16%)	2.6 (-13%)	2.3 (-19%)	3.1 (-17%)	n.a
Hydrogen Low Cl	3.6 (+1%)	n.a	n.a	n.a	3.2 (+48%)
Hydrogen High Cl	3.5 (-1%)	n.a	n.a	n.a	1.1 (-48%)

Primary Inputs: Fuel Efficiencies

Vehicle	CY 2019 Ave. of model-/MY- specific values	CY 2020 Ave. of model-/MY- specific values	Approach, Sources
PHEV (on electricity, on gasoline)	3.3 mi/kWh, 45 mi/gal	3.4 mi/kWh, 47 mi/gal	
BEVx (on electricity, on gasoline)	3.1 mi/kWh, 31 mi/gal	3.1 mi/kWh, 31 mi/gal	EPA rating for specific model/MY,
BEV	3.4 mi/kWh	3.4 mi/kWh	derived from (DOE and EPA 2021)
FCEV	65 mi/kg	64 mi/kg	
Baseline Vehicle	28.4 mi/gal	28.5 mi/gal	CA-sales-weighted average of EPA ratings for 30 top-selling light-duty gasoline models in each MY, calculated using data from (DOE and EPA 2021) and (IHS Markit 2021)

Ave. = average. MY = model year. mi = mile. kWh = kilowatt-hour. gal = gallon. Fuel efficiency ratings: EPA-adjusted combined city/hwy

Sensitivity of CY 2019 first-year GHG reductions: Baseline-vehicle fuel efficiency

Baseline-vehicle fuel efficiency scenario

Primary (CA sales-weighted average by MY)

U.S. production-weighted car-and-truck average

30 MPG

40 MPG

50 MPG

Most fuel-efficient gasoline model each MY

	Average first-year GHG reductions per vehicle (tCO ₂ e)		
	3.5		
e by MY	4.2 (+19%)		
	3.3 (-7%)		
	2.1 (-40%)		
	1.4 (-60%)		
	1.0 (-71%)		

Primary Inputs: Operation Timeframe

Operation Timeframe	CY 2019 & CY 2020	Source
PHEVs	150,000 miles	ZEV regulation battery warranty mileage requirement (California Code of Regulations 2009; 2012)
Other EV types	100,000 miles	Typical battery warranty mileage (EERE, 2020)

Sensitivity of CY 2019 first-year GHG reductions: Operation timeframe

Operation timeframe scenario

Primary input (100,000-/150,000-mile battery warrant

2.5-year rebate "project life" (CARB 2019)

6-year ownership (Demuro 2019)

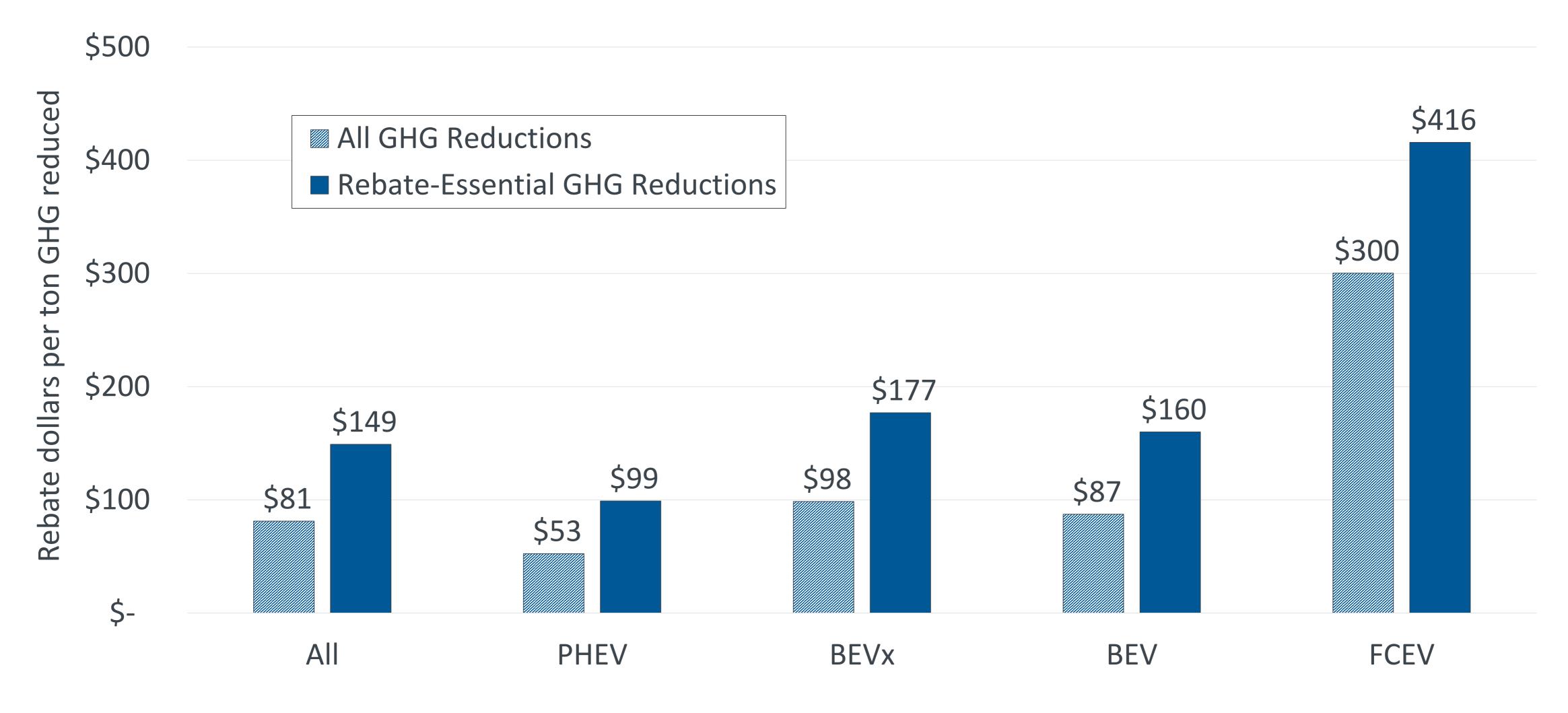
100,000 miles

11.2-year average CA vehicle age (Auto Innovators 202

150,000 miles

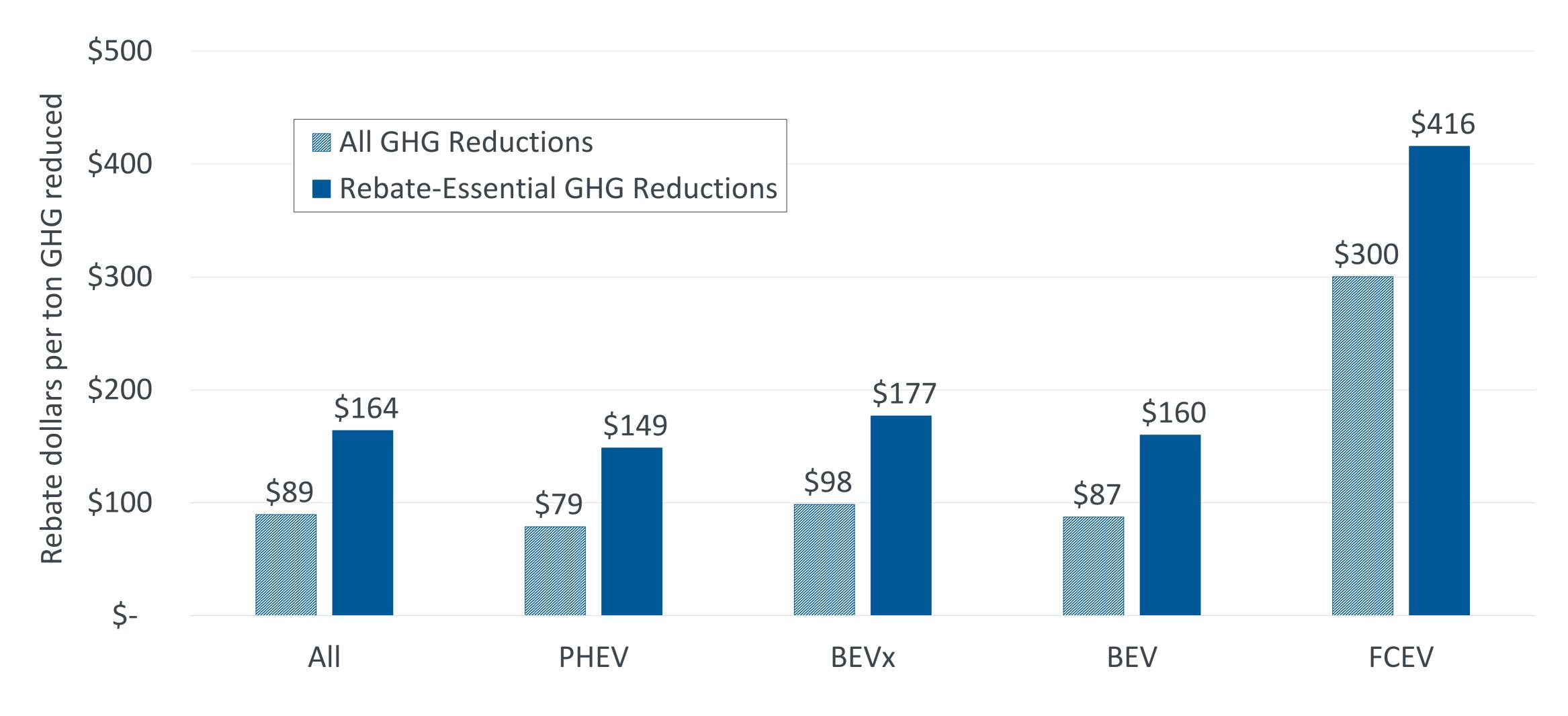
15-year project-comparison life (CARB 2019)

200,000 miles


ton GHGs = metric ton of CO_2 -equivalent emissions. References provided at end of presentation, in the IEPEC paper, and/or in the precursor <u>article in the journal Energies</u>

	Average operation-life GHG reductions per vehicle (tons)	Rebate dollars per ton GHGs reduced
nty life)	30	\$81
	9 (-71%)	\$279 (+243%)
	21 (-31%)	\$117 (+44%)
	28 (-9%)	\$89 (+10%)
)21b)	40 (+31%)	\$62 (-23%)
	41 (+36%)	\$60 (-27%)
	53 (+75%)	\$46 (-43%)
	55 (+81%)	\$45 (-45%)

CVRP Rebate-Essential Cost-Effectiveness (Warranty Life) by Vehicle Category, 2019 Purchases/Leases

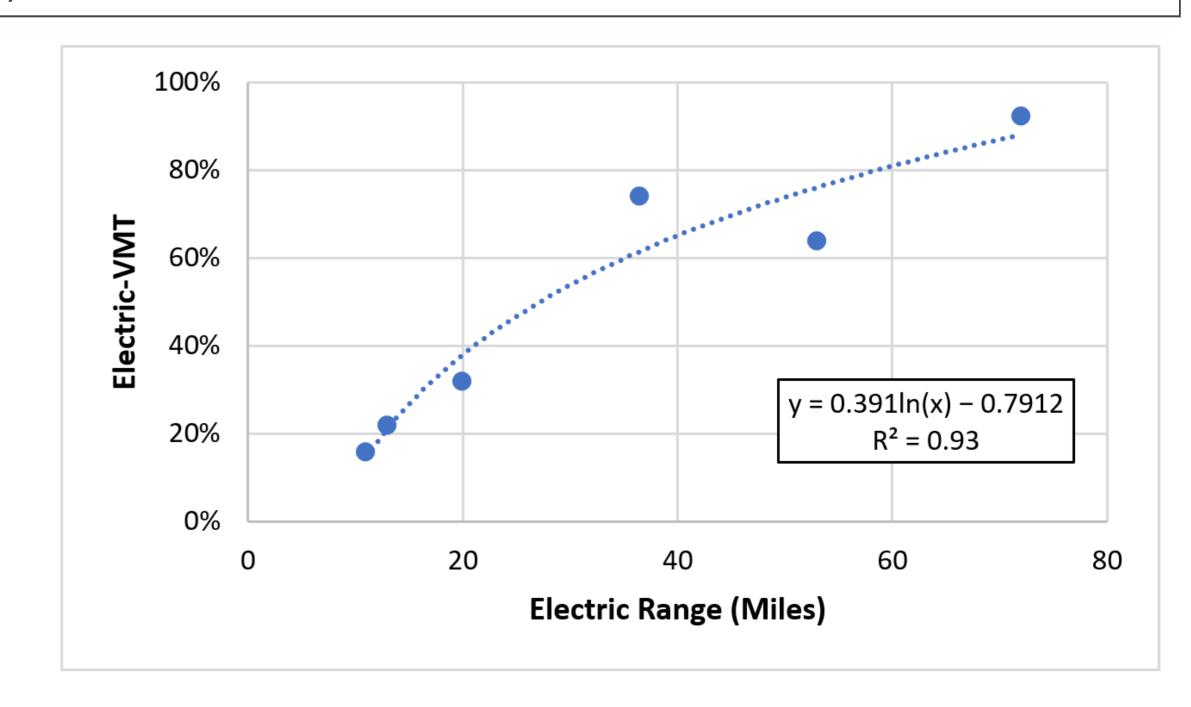


ton GHG = metric ton of CO_2 -equivalent emissions

CVRP Rebate-Essential Cost-Effectiveness (100k-Mile Life) by Vehicle Category, 2019 Purchases/Leases

ton GHG = metric ton of CO_2 -equivalent emissions

Primary Inputs: Percent Electric Vehicle Miles Traveled


Vehicle	CY 2019	CY 2020	Approach
PHEV (Ave. of model-/MY- specific values)	54%	56%	Model-/M 2019), (CA from (DOE 2015), (Du
BEVx	92%	92%	(CARB 201

h, Sources

/IY-specific percentage from literature when available (Tal, et al. ARB 2017) or calculated as a function of electric range using data E and EPA 2018), (Tal, et al. 2019), (CARB 2017), (INL 2015), (Carlson uhon, et al. 2015), (Boston and Werthman 2016)

17)

Primary Inputs: Annual Vehicle Miles Travelled (VMT)

Vehicle	Annual VMT	Approach, Sources
PHEV	13,475	(Chakraborty, Hardman, and Tal 2021)
BEVx / short range BEV	10,484	(Chakraborty, Hardman, and Tal 2021)
Long range BEV (200+ mi.)	13,018	(Chakraborty, Hardman, and Tal 2021)
FCEV	12,445	(Hardman 2019)
Baseline vehicle	10,484 to 13,475	Same as paired rebated vehicle, consistent with (CARB 2019)

References provided at end of presentation

Sensitivity of CY 2019 first-year GHG reductions: Annual VMT

Annual VMT scenario

Primary (UC Davis survey data)

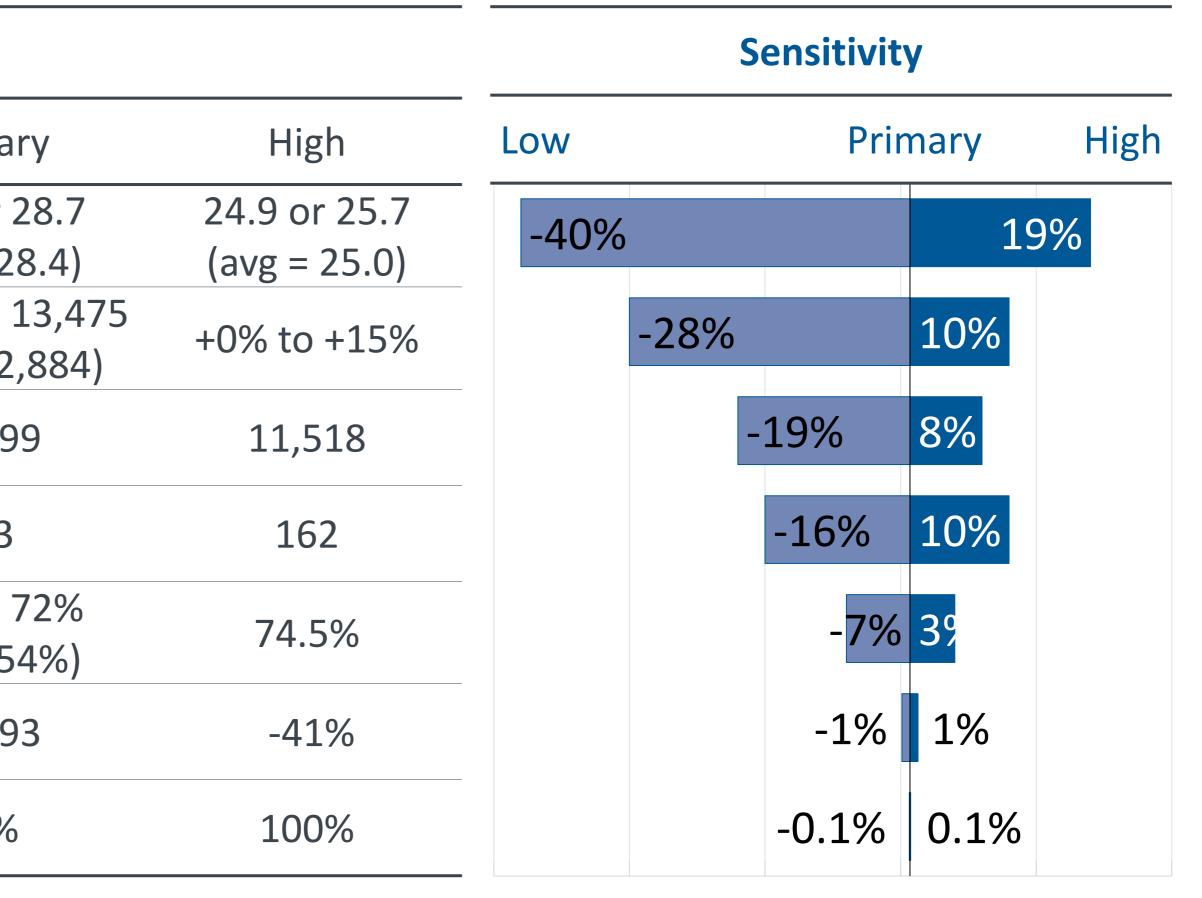
NHTS 2017 CA add-on

CEC Consumer Vehicle Survey

UC Davis on-board recorder data

Highest for each technology type (CEC and U

	Average first-year GHG reductions per vehicle (tCO ₂ e)		
	3.5		
	2.5 (-28%)		
	2.9 (-19%)		
	3.9 (+9%)		
UC Davis)	3.9 (+10%)		



First-Year Input Values & Sensitivity Analysis

Ir	Input Values & Ranges Tested			
Inputs	Low	Prima		
Baseline Fuel Efficiency (MPG)	40	28.3 or 2 (avg = 2		
Annual VMT	-23% to -40%	10,484 to 1 (avg = 12)		
Gasoline Carbon Intensity (gCO ₂ e/gal)	9,214	10,79		
Electricity Carbon Intensity (gCO ₂ e/kWh)	449	273		
PHEV Electric Operation	12%	27% to 7 (avg = 5		
Hydrogen Carbon Intensity (gCO ₂ e/kg)	+41%	13,39		
BEVx Electric Operation	84%	92%		

VMT = vehicle miles traveled ton GHGs = metric ton of CO₂-equivalent emissions

2.0 2.5 3.0 3.5 4.0 4.5

Average First-Year GHG Reductions Per Vehicle (tons)

GHG Reduction & Cost-Effectiveness: All Rebated Vehicles 2019 Purchases/Leases, by Rebate Type

Rebate type	Total vehicles	Average first-year reductions per vehicle (tons)	Average warranty- life reductions per vehicle (tons)	Total warranty-life GHG reductions (tons)	Rebate dollars warranty-life t GHGs reduce
Standard Rebate	N = 56,688 (90%)	3.5	30	1,715k (90%)	
Low-/Moderate-Income Increased Rebate	N = 6,408 (10%)	3.5	31	198k (10%)	\$
All	N = 63,096	3.5	30	1,913k 72,504,6	537
ton CUCc - motric ton (Incandescer lamps switc to LEDs (U.S. Grid N	nt hed

ton GHGs = metric ton CO_2e . U.S. EPA GHG equivalency from: <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>

Methodology: Rebate Influence Rebate-Essential or Rebate-Important GHG Reductions

- Survey respondents:
 - respectively
 - emission reductions are *not* included
- Survey non-respondents:
 - cohort

- If a participant was known to be *Rebate-Essential* or *Rebate-Important*, their emission reductions are included in *Rebate-Essential* or *Rebate-Important* metrics,

- if a participant was known not to be Rebate-Essential or Rebate-Important, their

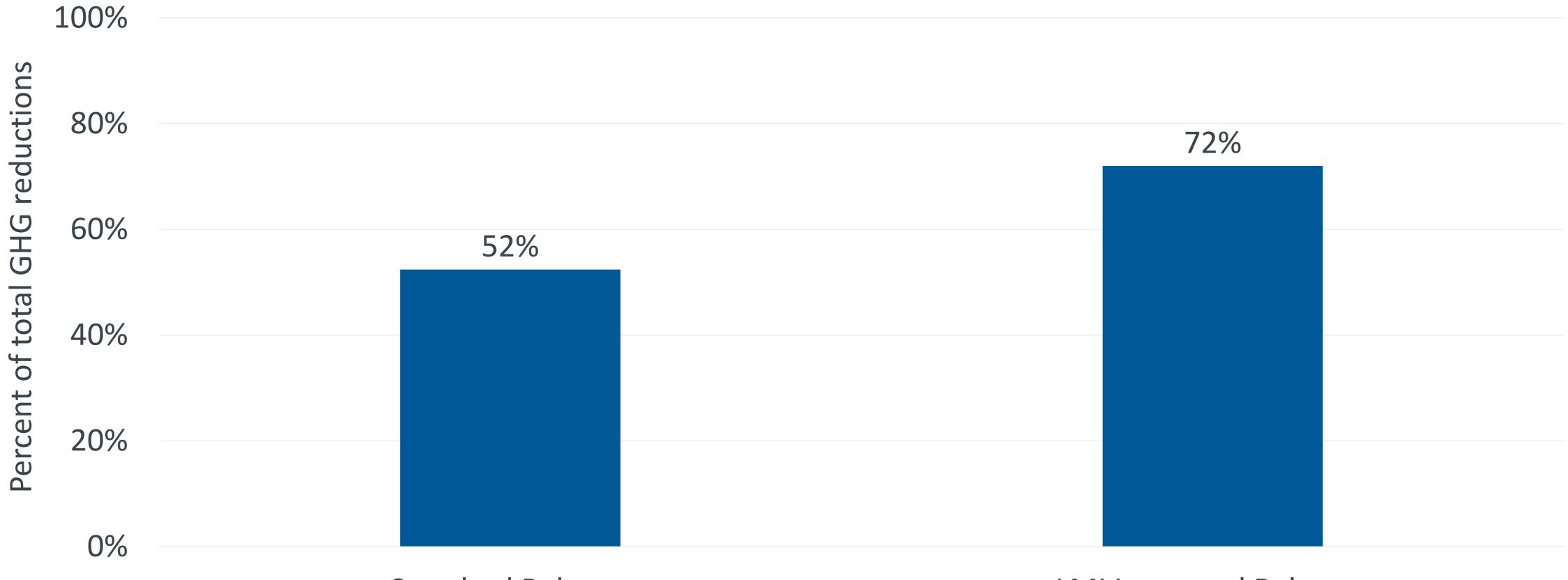
- if it was unknown whether a participant was Rebate-Essential or Rebate-Important, a fraction of their emission reductions are included, equal to the percentage of *Rebate Essentiality* or *Rebate Importance* among their vehicle- and rebate-type

Sensitivity Analysis: Rebate Influence **First-Year**

survey percentages was tested by adding or subtracting 15 percentage points from each

+/- 15pp is far more than the expected margin of error for these percentages (based on precursor work), to account for any unknown response or selection biases

13%



• Sensitivity of *Rebate-Essential* reductions to the *Rebate Essentiality*

• This changed the *Rebate-Essential* GHG reductions estimate by +/-

CVRP Rebate-Essential Reductions (Warranty Life) by Rebate Type, 2019 Purchases/Leases

Standard Rebates

LMI Increased Rebates

LMI = Low-/Moderate-Income

CVRP Rebate-Essential Cost-Effectiveness (Warranty Life) by Rebate Type, 2019 Purchases/Leases

Standard Rebates

LMI = Low-/Moderate-Income ton GHGs = metric ton of CO₂-equivalent emissions

LMI Increased Rebates

Comparisons: Inputs Carbon Intensity

Fuel	Life of Program Study [CY 2010–2018] (Pallonetti and Williams 2021)	Funding Plan [MY 2019] (CARB 2019)	Current Study [CY 2019]
Gasoline (gCO ₂ e/gal)	11,518 (2010 estimate)	11,518 (2010 estimate)	10,799 (2019 estimate)
Electricity (gCO ₂ e/kWh)	379 (2010 estimate)	338 (2016 estimate)	273 (2019 estimate)
Hydrogen (gCO ₂ e/kg)	13,393	13,392	13,393

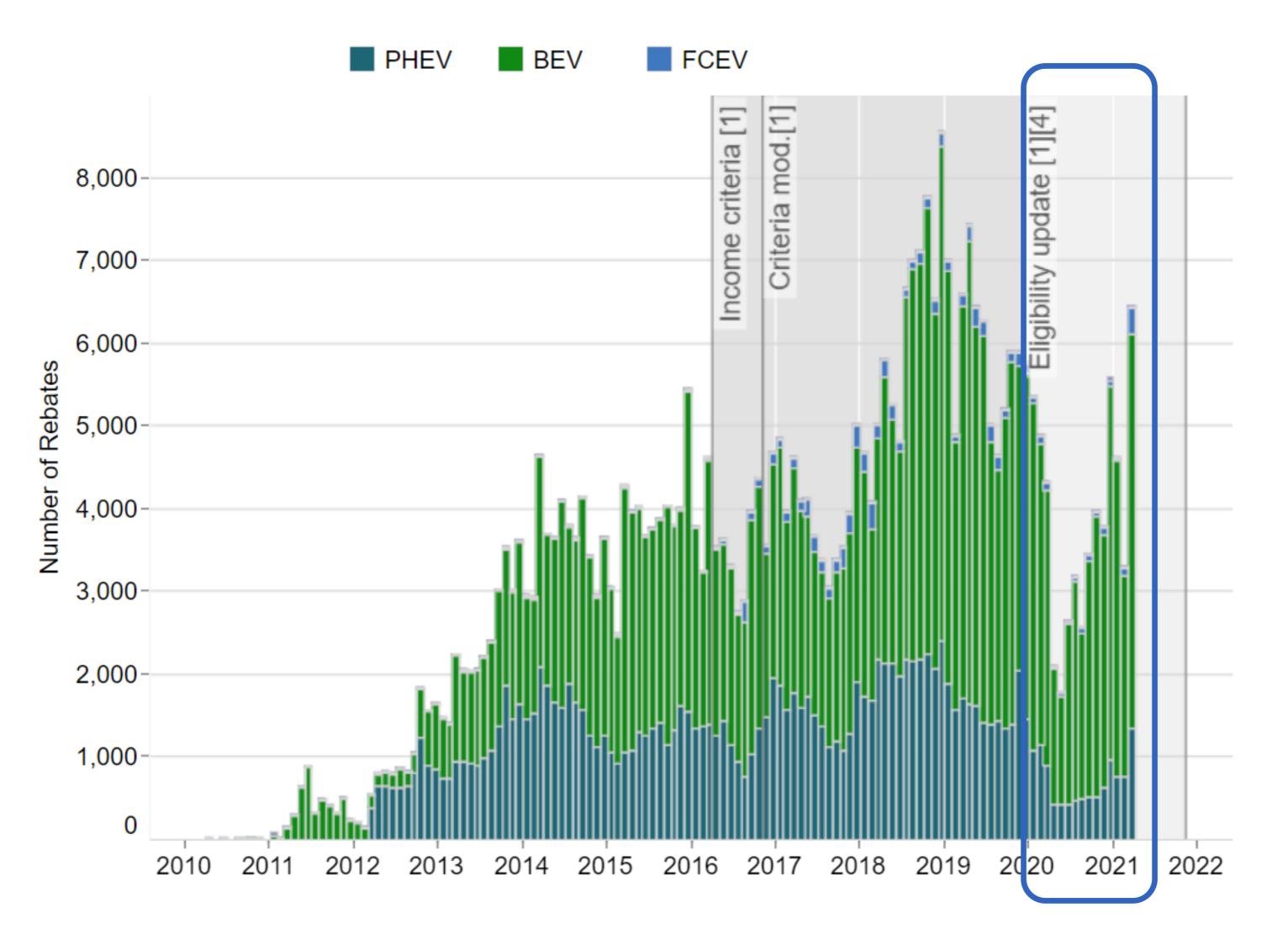
Comparisons: Inputs **Fuel Efficiency**

Vehicle	Life of Program Study* [CY 2010–2018] (Pallonetti and Williams 2021)	Funding Plan [MY 2019] (CARB 2019)	Current Study* [CY 2019]
PHEV (mi/kWh, e-VMT, MPG)	3.0, 49%, 42	3.6, 40%, 43	3.3, 54%, 45
BEVx (mi/kWh, e-VMT, MPG)	3.4, 92%, 38	n.a.	3.1, 92%, 31
BEV (mi/kWh)	3.1	3.6	3.4
FCEV (MPkg)	66	89	65
Baseline Gasoline (MPG)	28.2	34.4	28.4

* averages of model- and MY-specific values for EVs & average of MY-specific values for Baseline

Comparisons: Outputs Funding Plan

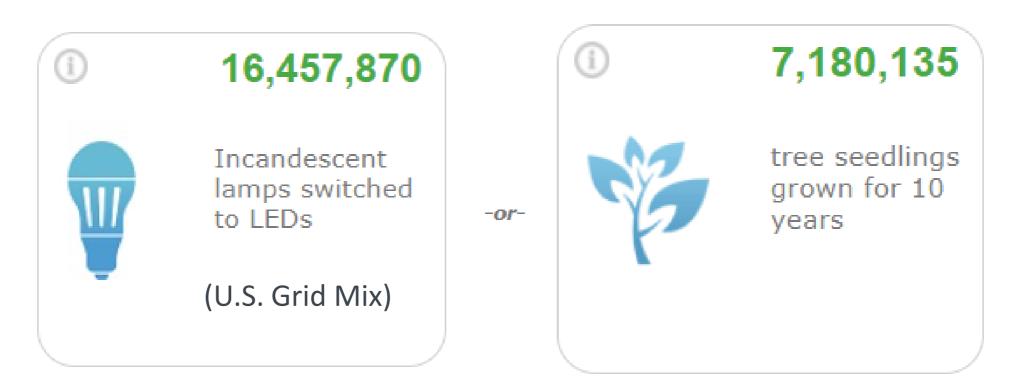
Funding Plan [MY 2019] (CARB 2019)			Current Study [CY 2019]*				
Technology Type	Avg. GHG Reductions Per Mile (grams)	First-Year VMT	Avg. First-Year GHG Reductions Per Vehicle (tons)	Technology Type	Avg. GHG Reductions Per Mile (grams)	First-Year VMT	Avg. First-Year GHG Reductions Per Vehicle (tons)
PHEV	137	14,855	2.0	PHEV	220 (+60%)	13,475	3.0 (+46%)
BEV	242	11,059	2.7	BEV	299 (+24%)	12,724 (avg.)	3.8 (+43%)
FCEV	185	12,445	2.3	FCEV	174 (-6%)	12,445	2.2 (-6%)


* Note: only minor differences (<2%) present in current study results between MY 2019 and CY 2019; CY presented for comparability to other tables and results.

Approved Applications Over Time: CY 2020 Purchases/Leases

12/29/21 image from <u>https://cleanvehiclerebate.org/eng/rebate-statistics</u>

With COVID exemptions, rebate applications for CY 2020 purchases/leases for individuals spanned 1/1/2020 – 4/15/2021.

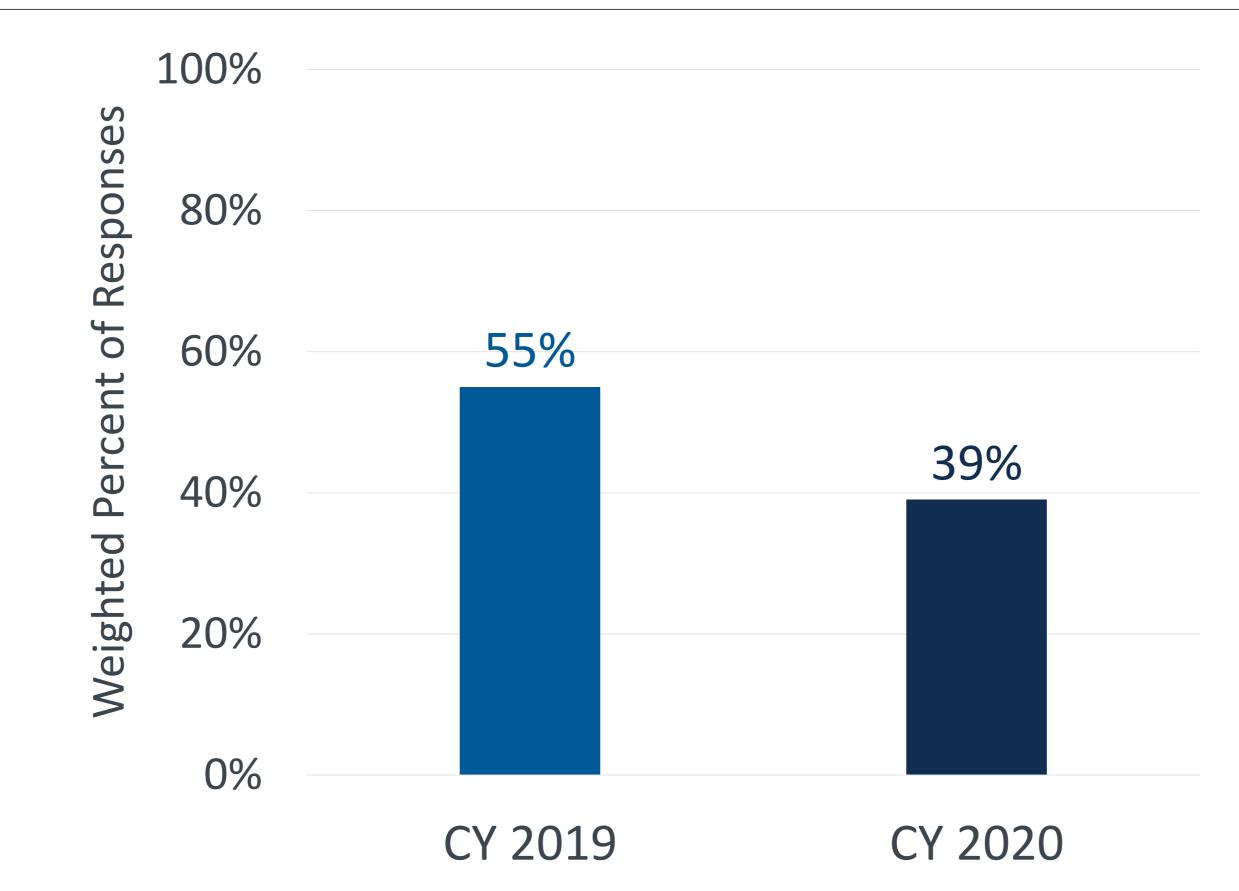

12% applied in 2021.

Estimated Greenhouse-Gas Emissions Reductions from Rebate-Essential Calendar-Year 2020 Purchases/Leases (draft)

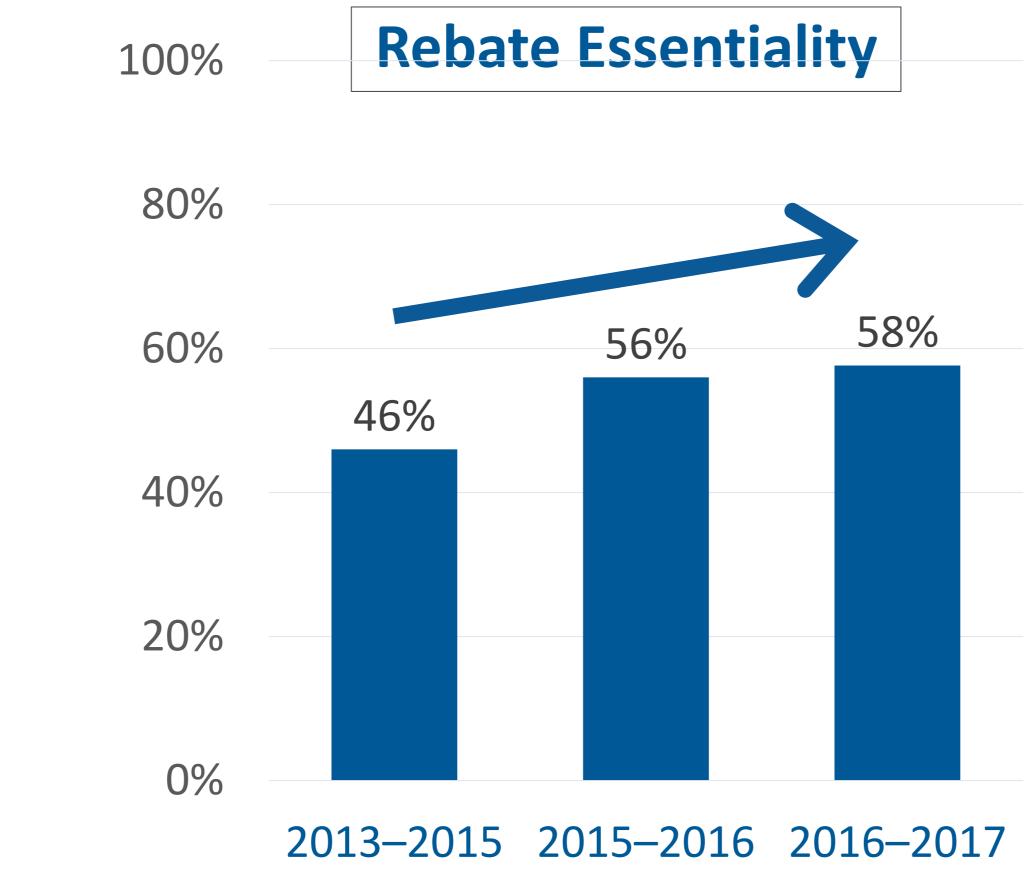
Technology type	Total vehicles	Average first-year GHG reductions per vehicle (tons)	Average warranty- life GHG reductions per vehicle (tons)	Total <i>Rebate-Essential</i> warranty-life reductions	Rebate dollars <i>Rebate-Essen</i> warranty-lif ton reduce
All	N = 37,201 39% Rebate Essential	3.6 tons	30 tons	434k tons	\$189/ton

434k tons avoided is the same as...

ton GHGs = metric ton carbon-dioxide-equivalent (CO_2e) emissions. U.S. EPA GHG equivalency from: <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>

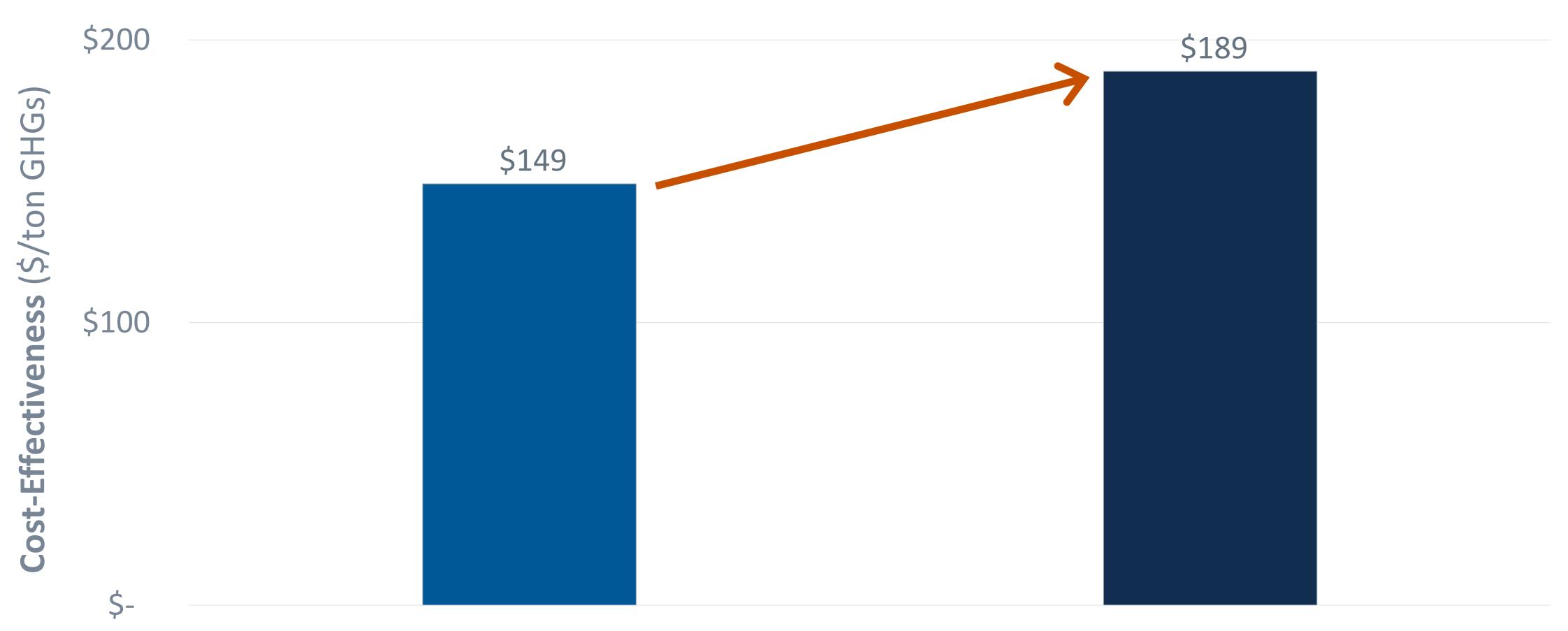


Rebate-Essential Participants: CY 2019 & 2020 Purchases/Leases


CVRP Consumer Survey: 2017–2019 edition. Filtered question n = 6,457. CVRP Consumer Survey: 2017–2020 edition. Filtered question n = 4,418. Starting 12/2019, PEVs with base MSRP > \$60k became ineligible.

Would not have purchased/leased their EV without the state rebate

Rebate Essentiality was Increasing Over Time



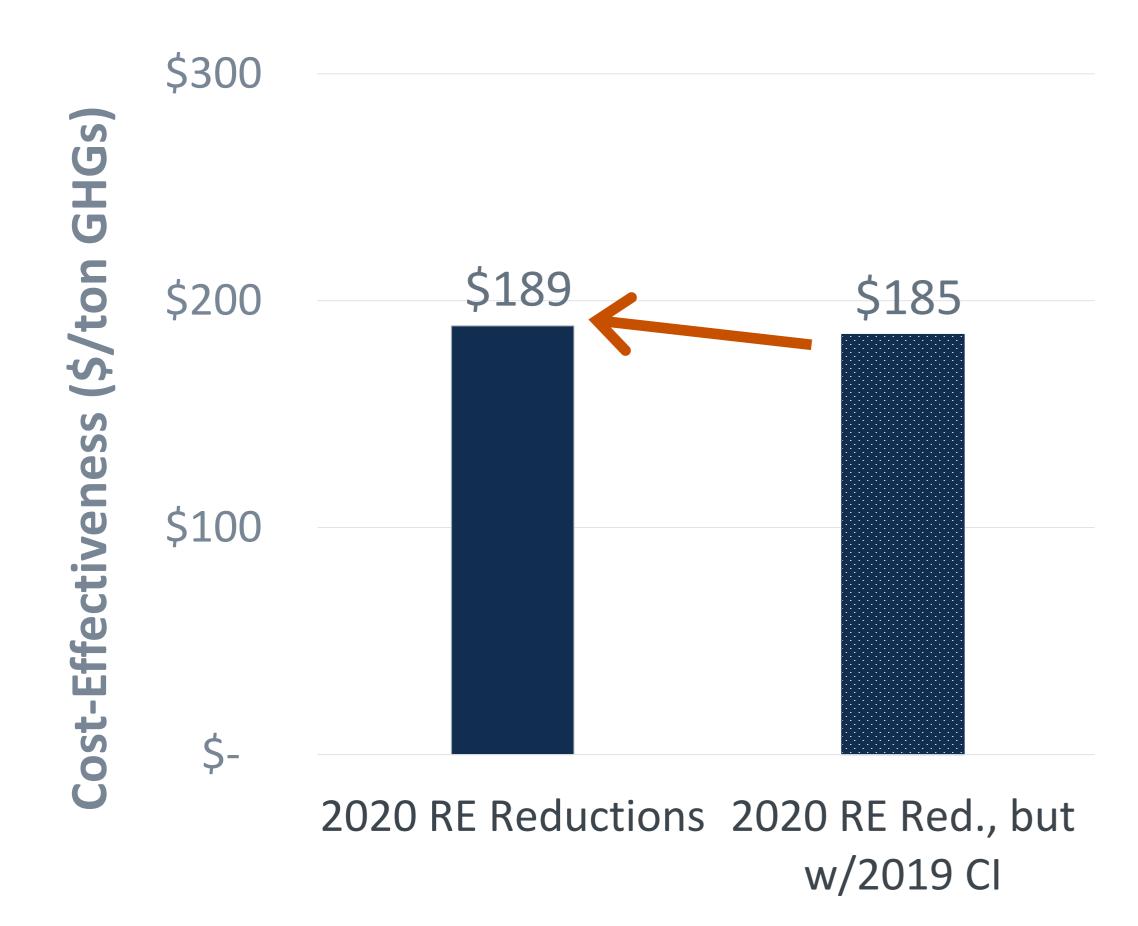
CVRP Consumer Survey. 2013–2015 edition: weighted, n=19,208. 2015–2016 edition: weighted, n=11,457. 2016–2017 edition: weighted, n=9,261

Cost-Effectiveness: Decreased from CY 2019 to draft CY 2020

2019 Rebate-Essential Reductions

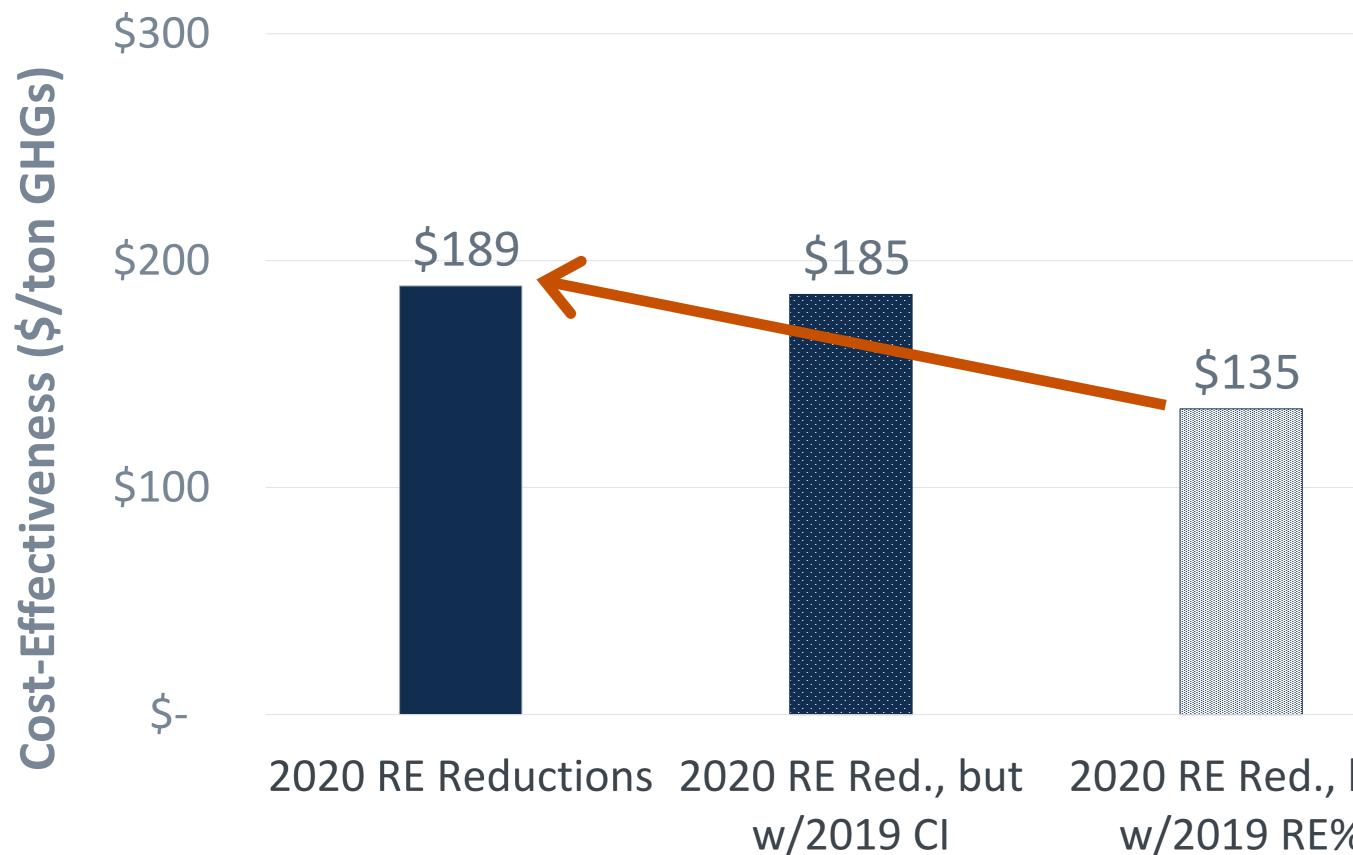
ton GHG = metric ton CO_2e . RE = *Rebate-Essential*. 2020 results based upon draft LCFS inputs.

2020 Rebate-Essential Reductions


Good Reasons Exist for Cost-Effectiveness to Worsen

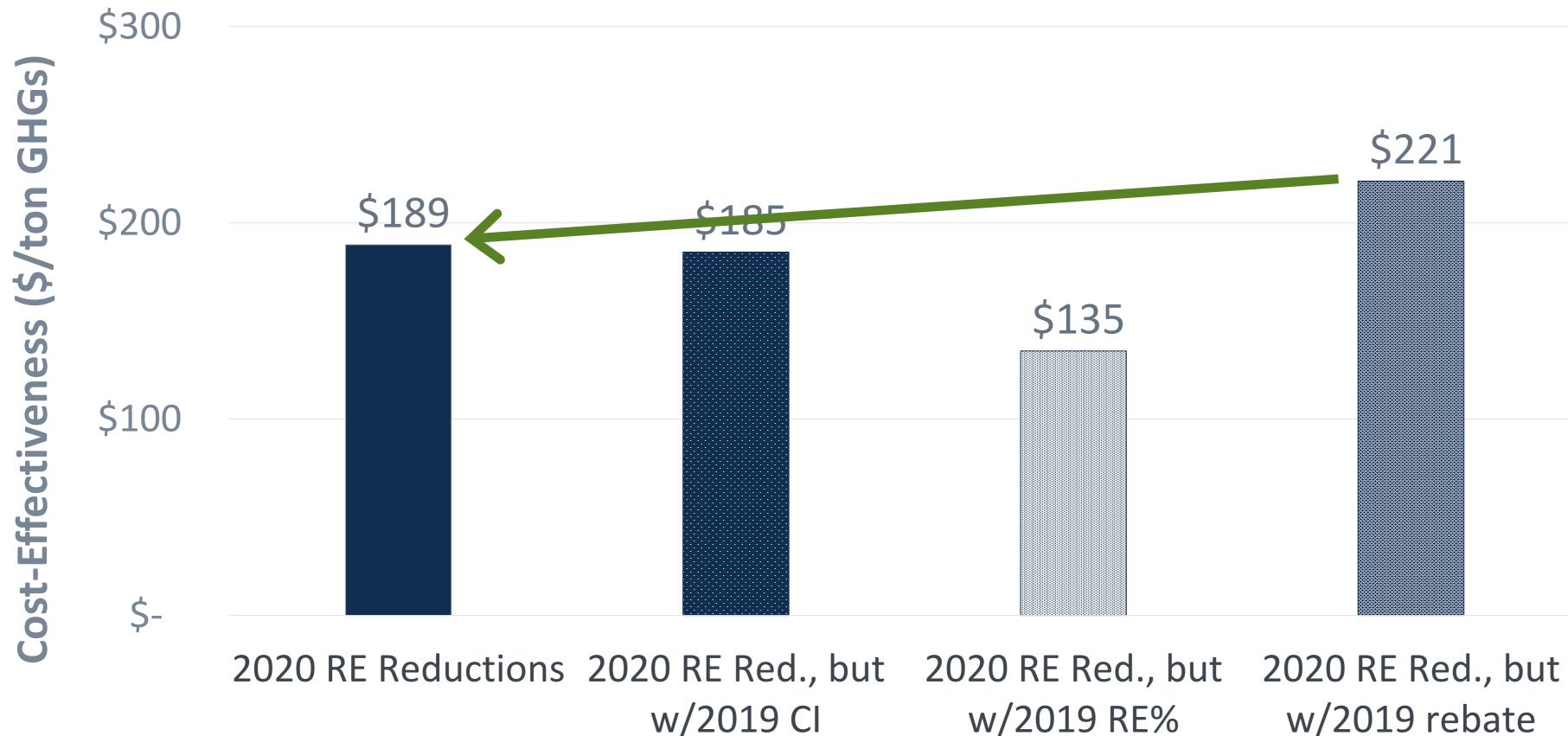
- Greater share of Increased Rebate for Low-/Moderate-Income Consumers
- Greater share of desired technology with higher rebate
- Gasoline improving ("raising the bar")

Improving Gasoline: Decreased Cost-Effectiveness Somewhat (draft)



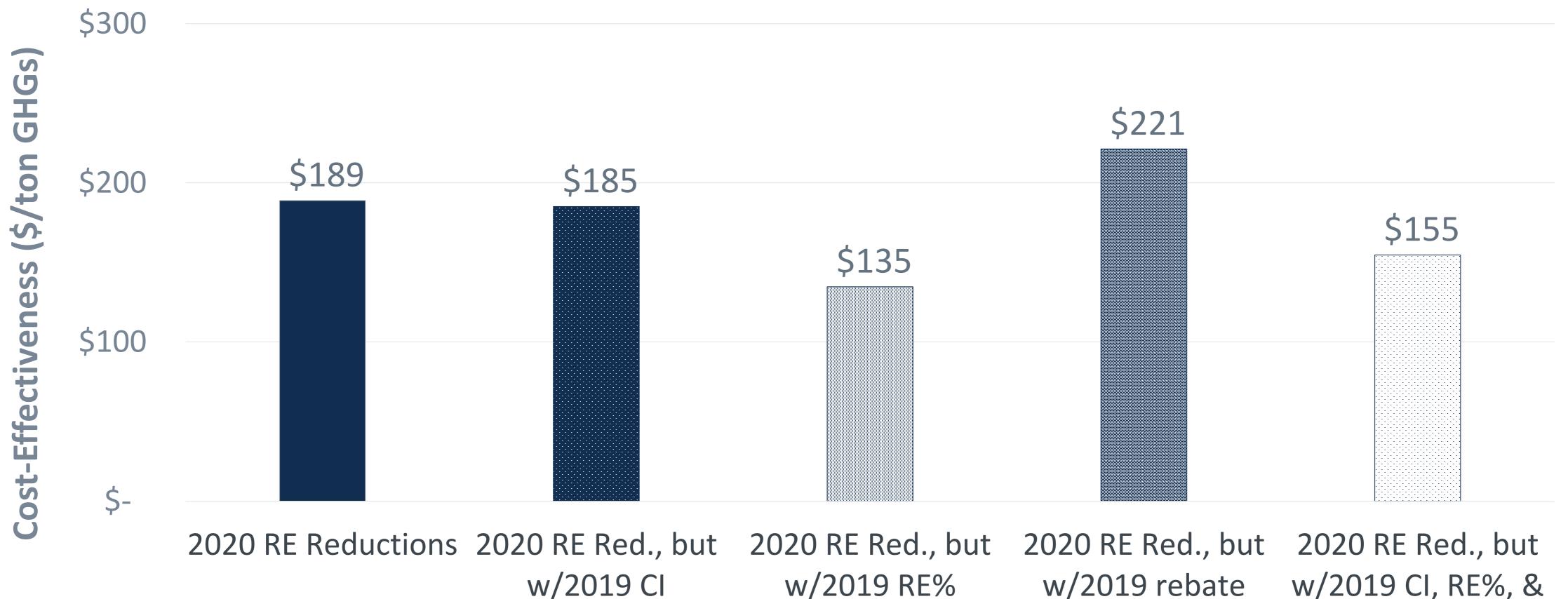
ton GHG = metric ton CO_2e . RE = *Rebate-Essential*. CI = carbon intensity of fuels. 2020 results based upon draft LCFS inputs.

Decreased Rebate Essentiality: Decreased Cost-Effectiveness (draft)


ton GHG = metric ton CO₂e. RE = *Rebate-Essential*. CI = carbon intensity of fuels. 2020 results based upon draft LCFS inputs.

2020 RE Red., but w/2019 RE%

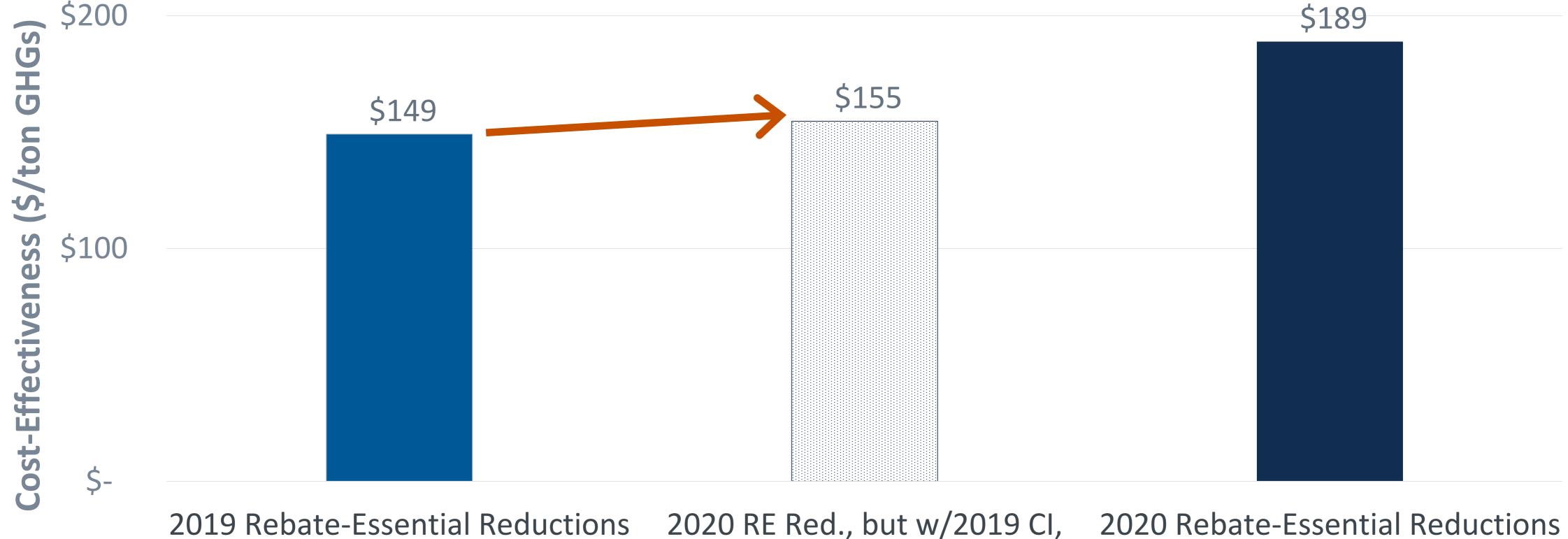
Decreased Rebate Amounts: Increased Cost-Effectiveness (draft)


ton GHG = metric ton CO₂e. RE = *Rebate-Essential*. CI = carbon intensity of fuels. 2020 results based upon draft LCFS inputs.

w/2019 RE% w/2019 rebate amounts

Decomposing the Differences Between 2019 and 2020 (draft)

ton GHG = metric ton CO₂e. RE = *Rebate-Essential*. CI = carbon intensity of fuels. 2020 results based upon draft LCFS inputs.



w/2019 rebate w/2019 RE% w/2019 CI, RE%, & rebate amounts amounts

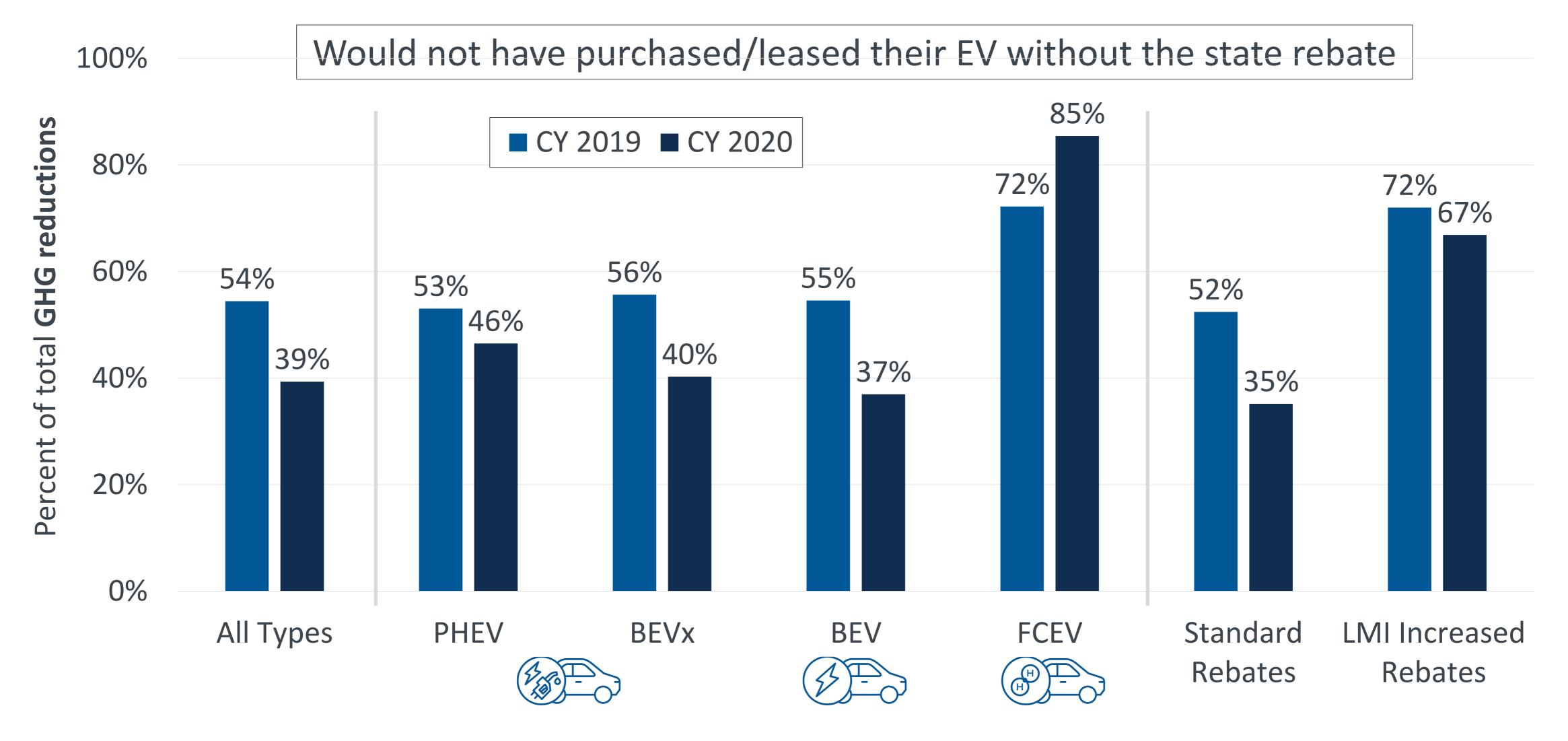
Changing Vehicle and Rebate Mix: Decreased Cost-Effectiveness (draft)

CY 2020 *Rebate-Essential* Reductions

RE%, & rebate amounts

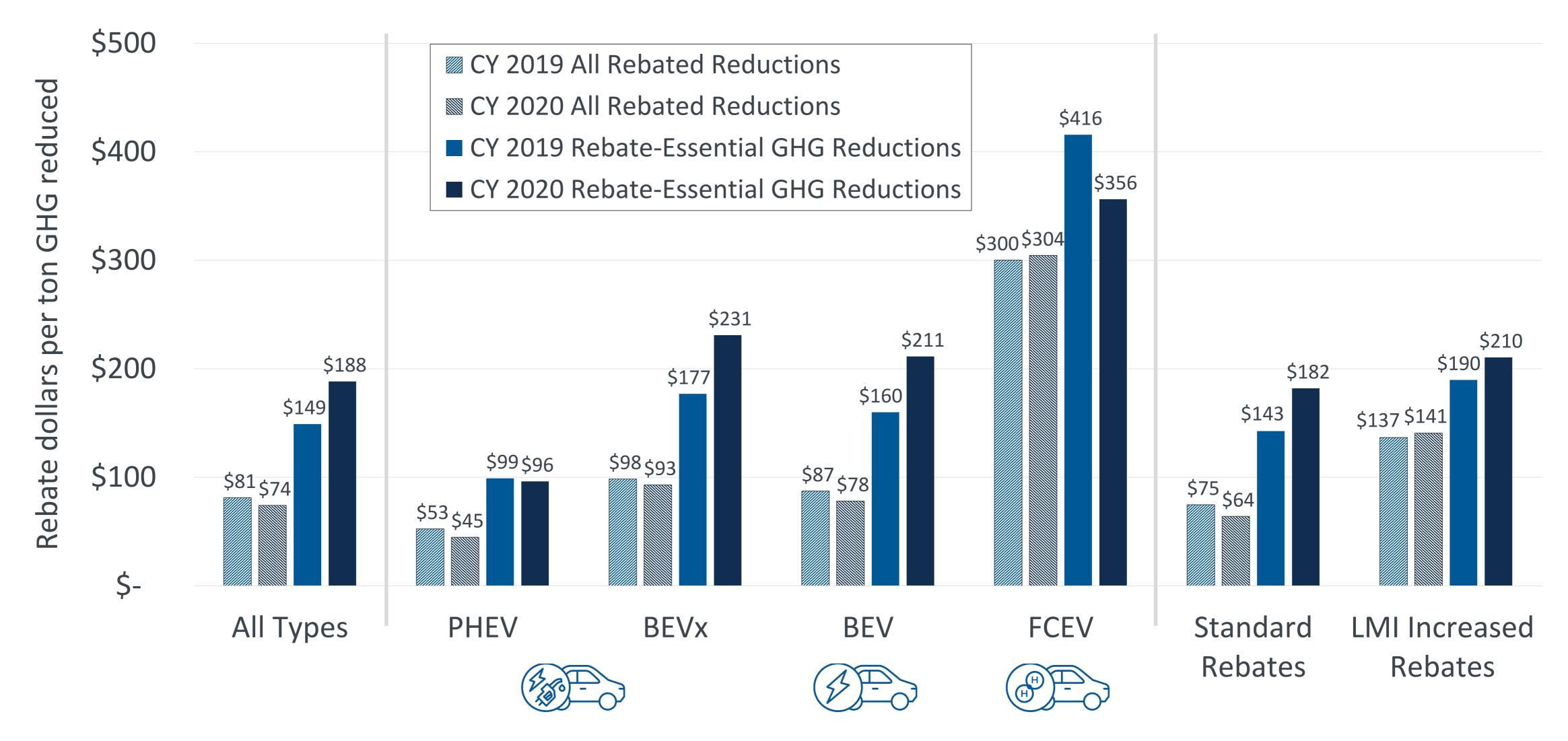
ton GHG = metric ton CO₂e. RE = *Rebate-Essential*. CI = carbon intensity of fuels. 2020 results based upon draft LCFS inputs.

Rebates: CY 2019 & 2020 Purchases/Leases


Τε	echnology type	2019	2020	Rebate type	2019	2020
	PHEV	16,177 (26%)	6,348 (17%)		56,688	32,416
<u> </u>	BEVx	703 (1%)	141 (0.4%)	Standard Rebates	(90%)	(87%)
	BEV	44,440 (70%) —	29,966 (81%)	Lower-Income	6,408	4,785
	FCEV	1,776 (3%)	746 (2%)	Increased Rebates	(10%) -	(13%)
	Total	63,096	37,201	Total	63,096	37,201

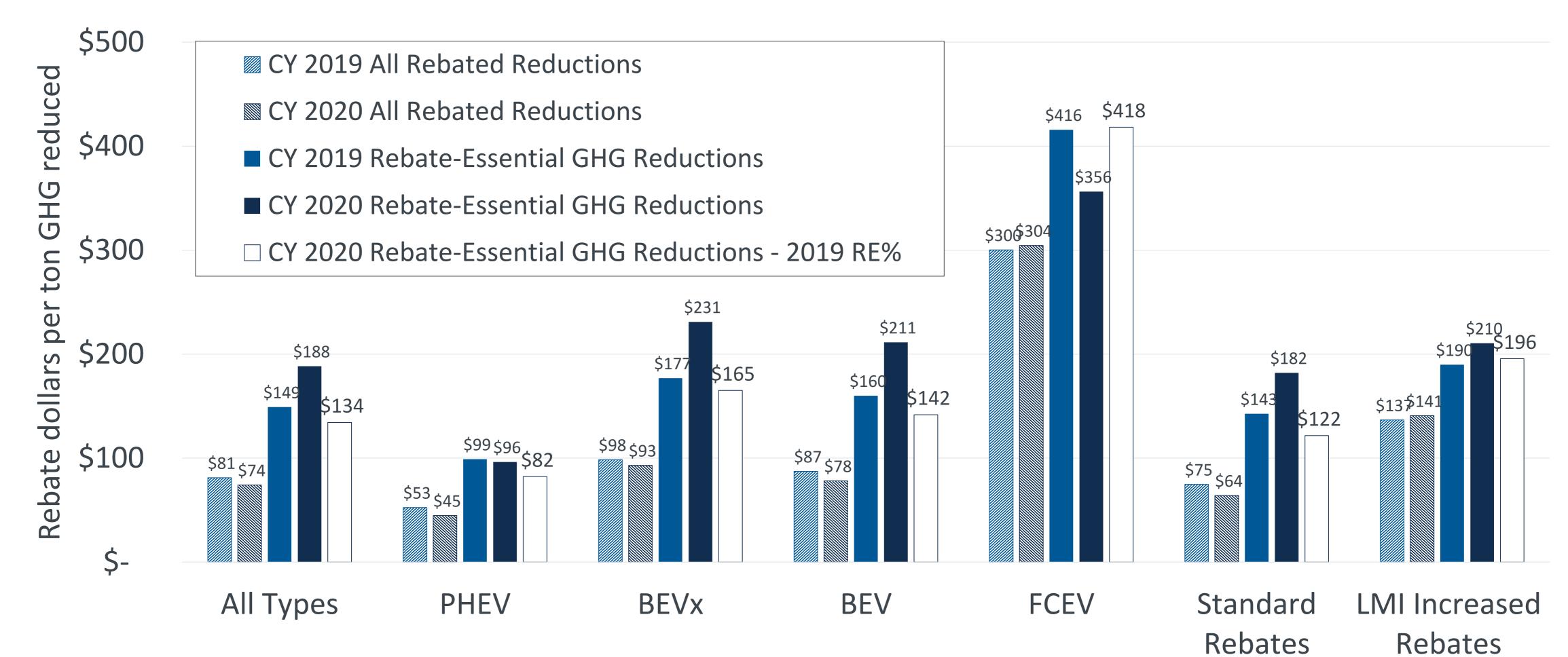
- BEVx = range-extended battery electric vehicle (BMW i3 REx)
 - BEV = battery electric vehicle
 - FCEV = fuel-cell electric vehicle
 - LMI = Low-/Moderate-Income

Rebate-Essential Reductions: 2019 & Partially Updated 2020 Warranty-Life



LMI = Low-/Moderate-Income

Cost-Effectiveness: 2019 & Partially Updated 2020 Warranty-Life



ton GHG = metric ton of CO₂-equivalent emissions; LMI = Low-/Moderate-Income

Absent Decrease in *Rebate Essentiality*, Trend is Improving Cost-Effectiveness (partially-updated 2020)

Other Presentations With Additional Context

EVs & Consumers Rebated for CY 2019 Purchases/Leases:

- <u>CVRP CY 2019 Data Brief: Vehicle Replacement & Incentive Influence</u>
- CVRP CY 2019 Data Brief: Consumer Characteristics
- <u>CVRP Data Brief: MSRP Considerations</u>
- <u>EV Purchase Incentives: Program Design, Outp</u>
 <u>Focus on Massachusetts</u>

Older, More Polluting Vehicles Replaced by Rebated EVs:

- <u>CVRP CY 2019 Data Brief: Vehicle Replacement & Incentive Influence</u>
- What Vehicles Are Electric Vehicles Replacing and Why?

EV Purchase Incentives: Program Design, Outputs, and Outcomes of Four Statewide Programs with a

82

Additional Select Findings: CY 2019 Rebates (part 1)

Program design and disruptions shape impacts

Vehicles Rebated

- Predominantly moderate-MSRP models:
 - > 92% with model-minimum MSRP <\$40,000 before incentives

Consumers Rebated: Characteristics and Appropriate Baselines

- right direction
- Household income also higher, but 62% or rebates in CA < \$150k, 70% in NY < \$200k; different picture than painted by population stats
- rebate recipients

Paths Forward

• Strategic consumer segments present possible paths toward the mainstream and beyond to increased access

• Metrics of race/ethnicity and age becoming comparable to new-vehicle buyers, others trending in

• Home ownership and, in particular, male gender much more frequent among rebated EV consumers

• New-car buying explains ½ to ¾ of difference in the income metric between the population and

Additional Select Findings: CY 2019 Rebates (part 2)

Vehicle Replacement

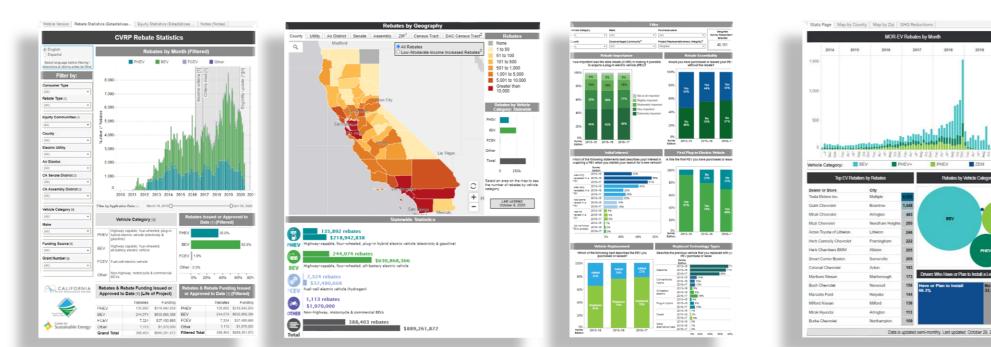
- Increased to 84+%:
- Indicators of impact tend to be *increasing*
- PHEVs produced strong replacement rates early, BEVs catching up
- GHG emissions per vehicle (12-year life) at costs <\$80/ton

Incentive Influence

- >89% found rebate an important enabler of EV acquisition; half or more would not have purchased/leased without it
- At MSRP greater than \$60k, rebate influence decreases substantially
- Attractive offerings (including Tesla products) have somewhat lower *Rebate Essentiality*, but the differences between luxury/non-luxury MSRPs are bigger
- Rebate influence and federal-tax-credit influence are similar
 - Half or more rated federal tax credit an extremely important enabler
 - Down somewhat from 2018 peak before phase out

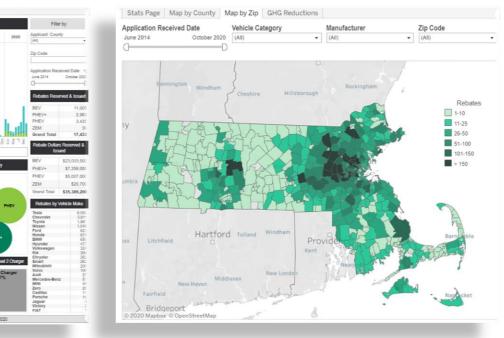
- > 77% were gasoline-fueled vehicles; > half were 5+ years old; > a quarter were 10+ years old

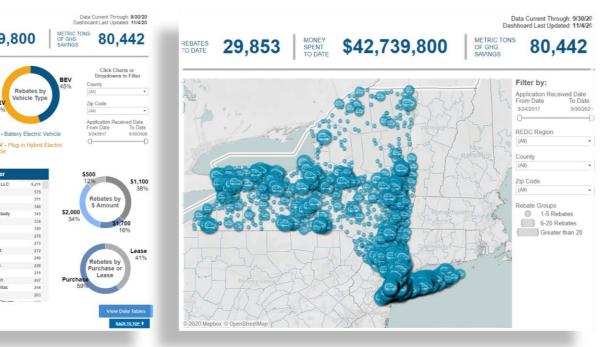
• Related research: when compared to buying a *new* non-EV, rebated EVs may be saving >29 tons of



Where Are EV Rebates Going? Public Dashboards and Data Facilitate Informed Action

Statewide EV Rebate Programs: CA, MA, CT, NY (OR and NJ dashboards forthcoming)




cleanvehiclerebate.org

ct.gov/deep

mor-ev.org

	19		20				
£ 1500		465			2		
1500 1000 500				152	106	130	
8 S	0 0		~	-	-	-	PH
5 1000 8	85	658	82				55
đ 🚔		ő	88				
Ž 500							
0							BEV
od Dd	Vov	C .0 %	Apr	5 3	Aug	Sep	PHE
õ	2 8	Jan Feb	4 0				
Rebates by Tesia			5,832		Rel	bates I	Vehi by Deal
Rebates by	Make a		~ 2	-	4		
and the second se	м	nd Model		1	Rel	bates I	by Deal
and the second se	M	nd Model odel 3 odel Y		2	Rel Tesia River	bates I Motors head To	oy Deal New York Jota
and the second se	M	nd Model odel 3 odel Y odel X	5,832 1,331 1,150	1	Rel Tesla River Smith	Motors Motors head To itown To	oy Deal New York Jota
Tesia	M M M	nd Model odel 3 odel Y odel X odel S	5,832 1,331 1,150 926	1	Rel Tesla River Smith Plaza	Motors head To itown To Kia	oy Deal New York Yota Yota
and the second se	M M M Pi	nd Model odel 3 odel Y odel X odel S rius Prime	5,832 1,331 1,150 926 6,862		Ret Tesla River Smith Plaza Fucci	bates I Motors head To town To Kia Ilo Kia o	New York yota yota
Tesia Toyota	M M M Pr	nd Model odel 3 odel Y odel X odel S rius Prime AV4 Prime	5,832 1,331 1,150 926 6,862 96	- -	Rel Tesla River Smith Plaza Fucci Hose	head Toy town To Kia Ilo Kia o Iton Toy	y Deal New York yota yota f Schene ota Scion
Tesia Toyota	M M M Pi R B	nd Model odel 3 odel Y odel X odel 5 trus Prime AV4 Prime ott	5,832 1,331 1,150 926 6,862 96 1,691		Rel Tesla River Smith Plaza Fucci Hosei Lia Te	Motors head To itown To Kia lio Kia o iton Toyi oyota of	y Deal New York yota yota f Schene ota Scion Colonie
Tesia Toyota Chevrolet	M M M Pi R B V	nd Model odel 3 odel Y odel X odel S itus Prime AV4 Prime ott ott	5,832 1,331 1,150 926 6,852 96 1,691 1,645	-	Rel Tesia River Smith Plaza Fucci Hose Lia Te Sunri	Motors head Toy town To Kia Ilo Kia o Iton Toy oyota of se Toyot	y Deal New York yota yota f Schene sta Scion Colonie ia
Tesia Toyota Chevrolet Honda	M M M Pi R B V C	nd Model odel 3 odel Y odel X odel S trus Prime AV4 Prime olt olt arity	5,832 1,331 1,150 926 6,852 96 1,691 1,645 2,104	-	Rel Tesia River Smith Plaza Fucci Hose Lia Tr Sunri Dorso	Motors head Toy town To Kia Ilo Kia o ton Toyo ton Toyo to ton Toyo t	by Deal New York yota yota f Schene ota Scion Colonie a ota
Tesia Toyota Chevrolet Honda	M M M Pr R B V C C C F	nd Model odel 3 odel Y odel X odel S trus Prime AV4 Prime olt olt arity usion Energi	5,832 1,331 1,150 926 6,862 96 1,691 1,645 2,104 1,777	3	Ret Testa River Smith Plaza Fucci Hose Lia Te Sunri Dorse Bob J	bates I Motors head Toy town To Kia Ilo Kia o iton Toyo oyota of se Toyol chel Toyo johnson	by Deal New York yota yota f Schene sta Scion Colonie ta sta Chevrole
Tesia Toyota Chevrolet Honda	M M M Pr R B V C C Fr C	nd Model odel 3 odel Y odel X odel S odel S itus Prime AV4 Prime ott ott situs sion Energi MAX Energi	5,832 1,331 1,150 926 6,862 96 1,601 1,601 1,601 2,104 1,777 250	-	Ret Testa River Smith Plaza Fucci Hose Lia Te Sunri Dorse Bob J Roma	Motors I Motors I head Toy town To Kia Ilo Kia o Iton Toy oyota of se Toyo chel Toyo kohnson ino Toyo	by Deal New York yota yota f Schene ota Scion Colonie ia ota Chevrole ta Ltd
Tesla Toyota Chevrolet Honda Ford	M M M P R B W C C C F C F C F	nd Model odel 3 odel Y odel X itus Prime AV4 Prime ott ott antty asion Energi MAX Energi ocus	5,832 1,331 1,159 988 6,862 986 1,891 1,845 2,104 1,777 2,500 25		Rel Tesla River Smith Plaza Fucci Hose Lia Tr Sunri Dorsc Bob J Roma Hose	Motors head Toy town To Kia Ilo Kia o Iton Toyo ton Toyo ton Toyo tohnson ino Toyo ton Che	by Deal New York yota yota f Schene sta Scion Colonie ia sta Chevrole ta Ltd vrolet, In
Tesla Toyota Chevrolet Honda Ford	M M M P R B B V C C C C F C C F C C F C Io	nd Model odel 3 odel 4 odel X odel 5 nius Prime AV4 Prime olt arity sion Energi AMAX Energi sucs nic Plug-In Hy.	5,832 1,231 1,150 928 6,862 986 1,691 1,645 2,104 1,777 250 25 . 967		Rel Tesla River Smith Plaza Fucci Hose Lia Tr Sunri Dorsc Bob J Roma Hose Prest	battes I Motors head Toy town To Kia Ilo Kia o Ito Kia o Ito Kia o Ito Toyo tohnson ino Toyo ton Che ige Toyo	by Deal New York ota yota f Schene sta Scion Colonie a sta Chevrole ta Ltd vrolet, In ta
Tesla Toyota Chevrolet Honda Ford	M M Pr B V C C C F C F C C F C Io Io Io	nd Model odel 3 odel Y odel S tus Prime AV4 Prime AV4 Prime AV4 Prime arity sion Energi AMAX Energi Sous tus Pitug-in Hy- nic_Electric	5,832 1,331 1,150 928 6,852 96 1,691 1,691 1,691 1,691 1,777 250 967 396		Rel Tesla River Smith Plaza Fucci Hosel Lia TR Sunri Dorsc Bob J Roma Hosel Prest Hemp	bates I Motors head Toy town To Kia Ilo Kia o Ilo Kia o Iton Toy opota of se Toy opota of se Toy opota of ton Che ige Toy ostaad Fo	by Deal New York yota yota f Schene sta Scion Colonie a sta Chevrolet ta Ltd vrolet, In ta ard Linco
Tesia Toyota	M M M M P R B V C C F C F C C F C F C F C F C F C F C	nd Model odel 3 odel 4 odel X odel 5 nius Prime AV4 Prime olt arity sion Energi AMAX Energi sucs nic Plug-In Hy.	5,832 1,231 1,150 928 6,862 986 1,691 1,645 2,104 1,777 250 25 . 967		Ret Tesla River Smith Plaza Fucci Hosel Lia Tr Sunri Dorso Bob J Roma Hosel Prest Hemp Magu	bates I Motors head Toy town To Kia Ilo Kia o Ilo Kia o Iton Toy opota of se Toy opota of se Toy opota of ton Che ige Toy ostaad Fo	by Deal New York ota yota f Schene sta Scion Colonie a sta Chevrole ta Ltd vrolet, In ta

nyserda.ny.gov (dashboards done by NYSERDA)

- > 442,000 EVs and consumers have received > \$979 M in rebates
- > 75,000 survey responses being analyzed so far, statistically represent > 319,000 consumers
- Reports, presentations, and analysis growing

As of 11/4/2020

Select Publications (Reverse Chronological, as of 12/21/21)

- **Evaluation Conference 2022.**
- \bullet Vehicle Rebate Project with Program Data and Other Case-Specific Inputs," Energies, vol. 14, no. 15, Jul. 2021.
- B. D. H. Williams and J. B. Anderson, "Strategically Targeting Plug-In Electric Vehicle Rebates and Outreach Using 'EV Convert' \bullet <u>Characteristics</u>," Energies, vol. 14, no. 7, p. 1899, Mar. 2021.
- \bullet Zenodo, Portland OR, 2020. https://doi.org/10.5281/ZENODO.4021408
- in Hybrid and Electric Vehicle Research Center, 2019.
- \bullet <u>2013–2015 Edition</u> | Clean Vehicle Rebate Project, Center for Sustainable Energy (CSE), San Diego CA, 2018.
- \bullet Consumers in 2016–2017, in: 31st Int. Electr. Veh. Symp., Society of Automotive Engineers of Japan, Inc., Kobe, Japan, 2018.
- Sustainable Energy (CSE), 2017.
- *Transp. Res. Rec.* 2628 (2017) 23–31.

N. Pallonetti and B.D.H. Williams (2022, January). "Evaluating the Cost-Effectiveness of Greenhouse Gas Emission Reductions Associated with Statewide Electric Vehicle Rebate Programs in California and Massachusetts in 2019," in procs. International Energy Program

N. Pallonetti and B. D. H. Williams, "Refining Estimates of Fuel-Cycle Greenhouse-Gas Emission Reductions Associated with California's Clean

B.D.H. Williams, J.B. Anderson, A. Lastuka, Characterizing Plug-in Hybrid Electric Vehicle Consumers Who Found the U.S. Federal Tax Credit Extremely Important in Enabling Their Purchase, in: 33rd Electr. Veh. Symp., Electric Drive Transportation Association (EDTA), EVS33, and

S. Hardman, P. Plötz, G. Tal, J. Axsen, E. Figenbaum, P. Jochem, S. Karlsson, N. Refa, F. Sprei, B.D. Williams, J. Whitehead, B. Witkamp, Exploring the Role of Plug-In Hybrid Electric Vehicles in Electrifying Passenger Transportation, International EV Policy Council, UC Davis Plug-

B.D. Williams, J. Orose, M. Jones, J.B. Anderson, Summary of Disadvantaged Community Responses to the Electric Vehicle Consumer Survey,

B.D. Williams, J.B. Anderson, Strategically Targeting Plug-in Electric Vehicle Rebates and Outreach Using Characteristics of 'Rebate-Essential"

C. Johnson, B.D. Williams, J.B. Anderson, N. Appenzeller, Evaluating the Connecticut Dealer Incentive for Electric Vehicle Sales, Center for

• C. Johnson, B.D. Williams, Characterizing Plug-In Hybrid Electric Vehicle Consumers Most Influenced by California's Electric Vehicle Rebate,

Select Presentations (Reverse Chronological, as of 12/21)

- ${\color{black}\bullet}$
- Data from Statewide Electric Vehicle Rebate Programs: Vehicles, Consumers, Impacts, and Effectiveness
- CVRP CY 2019 Data Brief: Vehicle Replacement & Incentive Influence ${\color{black}\bullet}$
- CVRP CY 2019 Data Brief: Consumer Characteristics ${\bullet}$
- **CVRP Data Brief: MSRP Considerations**
- What Vehicles Are Electric Vehicles Replacing and Why?
- **Electric Vehicle Incentives and Policies**
- Proposed FY 2019–20 Funding Plan: Final CVRP Supporting Analysis
- **CVRP:** Data and Analysis Update
- Cost-Effectively Targeting EV Outreach and Incentives to "Rebate-Essential" Consumers
- Electric Vehicle Rebates: Exploring Indicators of Impact in Four States
- Targeting EV Consumer Segments & Incentivizing Dealers

- **CVRP Income Cap Analysis: Informing Policy Discussions** ${\color{black}\bullet}$

California Plug-in Hybrid EV Consumers Who Found the U.S. Federal Tax Credit Extremely Important in Enabling Their Purchase

EV Purchase Incentives: Program Design, Outputs, and Outcomes of Four Statewide Programs with a Focus on Massachusetts

Supporting EV Commercialization with Rebates: Statewide Programs, Vehicle & Consumer Data, and Select Findings Yale Webinar: Supporting EV Commercialization with Rebates: Statewide Programs, Vehicle & Consumer Data, and Findings

CSE Areas of Expertise

Clean **Transportation**

Adoption of electric vehicles and deployment of charging infrastructure

Advancing energy efficiency and renewable resources

Built Environment

https://energycenter.org/

Technology Convergence

Interconnecting systems to achieve decarbonization

Recommended citation:

B.D.H. Williams and N. Pallonetti (2022). Presentation: "Cost-Effectiveness of Greenhouse Gas Emission Reductions Associated with California's Clean Vehicle Rebate Project in 2019 (and 2020)," for First Public Workshop on the Fiscal Year 2022-23 Update to the Three-Year Plan for Light-Duty Vehicles and Clean Transportation Equity Investments. California Air Resources Board, 10 February 2022.

Questions?: brett.williams@energycenter.org

Related papers and presentations available:

cleanvehiclerebate.org/program-reports

